The High-energy Radiation Environment around a 10 Gyr M Dwarf: Habitable at Last?
Recent work has demonstrated that high levels of X-ray and UV activity on young M dwarfs may drive rapid atmospheric escape on temperate, terrestrial planets orbiting within the habitable zone. However, secondary atmospheres on planets orbiting older, less active M dwarfs may be stable and present m...
Gespeichert in:
Veröffentlicht in: | The Astronomical journal 2020-11, Vol.160 (5), p.237, Article 237 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent work has demonstrated that high levels of X-ray and UV activity on young M dwarfs may drive rapid atmospheric escape on temperate, terrestrial planets orbiting within the habitable zone. However, secondary atmospheres on planets orbiting older, less active M dwarfs may be stable and present more promising candidates for biomarker searches. In order to evaluate the potential habitability of Earth-like planets around old, inactive M dwarfs, we present new Hubble Space Telescope and Chandra X-ray Observatory observations of Barnard's Star (GJ 699), a 10 Gyr old M3.5 dwarf, acquired as part of the Mega-MUSCLES program. Despite the old age and long rotation period of Barnard's Star, we observe two FUV (δ130 5000 s; E130 1029.5 erg each) and one X-ray (EX 1029.2 erg) flares, and we estimate a high-energy flare duty cycle (defined here as the fraction of the time the star is in a flare state) of ∼25%. A publicly available 5 to 10 m spectral energy distribution of GJ 699 is created and used to evaluate the atmospheric stability of a hypothetical, unmagnetized terrestrial planet in the habitable zone (rHZ ∼ 0.1 au). Both thermal and nonthermal escape modeling indicate (1) the quiescent stellar XUV flux does not lead to strong atmospheric escape: atmospheric heating rates are comparable to periods of high solar activity on modern Earth, and (2) the flare environment could drive the atmosphere into a hydrodynamic loss regime at the observed flare duty cycle: sustained exposure to the flare environment of GJ 699 results in the loss of 87 Earth atmospheres Gyr−1 through thermal processes and 3 Earth atmospheres Gyr−1 through ion loss processes. These results suggest that if rocky planet atmospheres can survive the initial ∼5 Gyr of high stellar activity, or if a second-generation atmosphere can be formed or acquired, the flare duty cycle may be the controlling stellar parameter for the stability of Earth-like atmospheres around old M stars. |
---|---|
ISSN: | 0004-6256 1538-3881 1538-3881 |
DOI: | 10.3847/1538-3881/abb465 |