Convergence Order of the Reproducing Kernel Method for Solving Boundary Value Problems

In this paper, convergence rate of the reproducing kernel method for solving boundary value problems is studied. The equivalence of two reproducing kernel spaces and some results of adjoint operator are proved. Based on the classical properties of piecewise linear interpolating function, we provide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical modelling and analysis 2016-07, Vol.21 (4), p.466-477
Hauptverfasser: Zhao, Zhihong, Lin, Yingzhen, Niu, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 477
container_issue 4
container_start_page 466
container_title Mathematical modelling and analysis
container_volume 21
creator Zhao, Zhihong
Lin, Yingzhen
Niu, Jing
description In this paper, convergence rate of the reproducing kernel method for solving boundary value problems is studied. The equivalence of two reproducing kernel spaces and some results of adjoint operator are proved. Based on the classical properties of piecewise linear interpolating function, we provide the convergence rate analysis of at least second order. Moreover, some numerical examples showing the accuracy of the proposed estimations are also given.
doi_str_mv 10.3846/13926292.2016.1183240
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3846_13926292_2016_1183240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A569607745</galeid><doaj_id>oai_doaj_org_article_785020812ee74cd2b0fcfa8a0a4994d0</doaj_id><sourcerecordid>A569607745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-7e63285164fa7d63a92042b995ed2bdb31637546cfe180cbb2022f64b3f531f73</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhSMEEqXwE5C8ZJNbv-PsKFc8KopaFejWcuzxbSrHLnbSqv8ehxSWyAtb43O-Gfs0zVuCd0xxeUJYTyXt6Y5iIneEKEY5ftYcEclVywTBz-u5atpV9LJ5VcotxkJQhY-a632K95APEC2gi-wgo-TRfAPoCu5ycosd4wF9hRwhoG8w3ySHfMroewr3682HtERn8iO6NmEBdJnTEGAqr5sX3oQCb5724-bnp48_9l_a84vPZ_vT89Zyrua2A8moEnVQbzonmekp5nToewGODm5gRLJOcGk9EIXtMFBMqZd8YF4w4jt23JxtXJfMrb7L41Rn0cmM-k8h5YM2eR5tAN0pgSlWhAJ03FY89tYbZbDhfc8drqx3G6u--9cCZdbTWCyEYCKkpWiiqKi_hhmp0t0mPZhKHqNPcza2LgfTaFMEP9b6qZC9xF3HRTWIzWBzKiWD_zcrwXoNUf8NUa8h6qcQq-_95lt75Mk8pBycns1jSNlnE-1YNPs_4jd6sqGz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825552031</pqid></control><display><type>article</type><title>Convergence Order of the Reproducing Kernel Method for Solving Boundary Value Problems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhao, Zhihong ; Lin, Yingzhen ; Niu, Jing</creator><creatorcontrib>Zhao, Zhihong ; Lin, Yingzhen ; Niu, Jing</creatorcontrib><description>In this paper, convergence rate of the reproducing kernel method for solving boundary value problems is studied. The equivalence of two reproducing kernel spaces and some results of adjoint operator are proved. Based on the classical properties of piecewise linear interpolating function, we provide the convergence rate analysis of at least second order. Moreover, some numerical examples showing the accuracy of the proposed estimations are also given.</description><identifier>ISSN: 1392-6292</identifier><identifier>EISSN: 1648-3510</identifier><identifier>DOI: 10.3846/13926292.2016.1183240</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Adjoints ; boundary value problem ; Boundary value problems ; Convergence ; Convergence (Mathematics) ; convergence analysis ; Equivalence ; Kernel functions ; Kernels ; Mathematical analysis ; Mathematical models ; Mathematical research ; Operators (mathematics) ; reproducing kernel method</subject><ispartof>Mathematical modelling and analysis, 2016-07, Vol.21 (4), p.466-477</ispartof><rights>2016 Vilnius Gediminas Technical University 2016</rights><rights>COPYRIGHT 2016 Vilnius Gediminas Technical University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-7e63285164fa7d63a92042b995ed2bdb31637546cfe180cbb2022f64b3f531f73</citedby><cites>FETCH-LOGICAL-c448t-7e63285164fa7d63a92042b995ed2bdb31637546cfe180cbb2022f64b3f531f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhao, Zhihong</creatorcontrib><creatorcontrib>Lin, Yingzhen</creatorcontrib><creatorcontrib>Niu, Jing</creatorcontrib><title>Convergence Order of the Reproducing Kernel Method for Solving Boundary Value Problems</title><title>Mathematical modelling and analysis</title><description>In this paper, convergence rate of the reproducing kernel method for solving boundary value problems is studied. The equivalence of two reproducing kernel spaces and some results of adjoint operator are proved. Based on the classical properties of piecewise linear interpolating function, we provide the convergence rate analysis of at least second order. Moreover, some numerical examples showing the accuracy of the proposed estimations are also given.</description><subject>Adjoints</subject><subject>boundary value problem</subject><subject>Boundary value problems</subject><subject>Convergence</subject><subject>Convergence (Mathematics)</subject><subject>convergence analysis</subject><subject>Equivalence</subject><subject>Kernel functions</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical research</subject><subject>Operators (mathematics)</subject><subject>reproducing kernel method</subject><issn>1392-6292</issn><issn>1648-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUtv1TAQhSMEEqXwE5C8ZJNbv-PsKFc8KopaFejWcuzxbSrHLnbSqv8ehxSWyAtb43O-Gfs0zVuCd0xxeUJYTyXt6Y5iIneEKEY5ftYcEclVywTBz-u5atpV9LJ5VcotxkJQhY-a632K95APEC2gi-wgo-TRfAPoCu5ycosd4wF9hRwhoG8w3ySHfMroewr3682HtERn8iO6NmEBdJnTEGAqr5sX3oQCb5724-bnp48_9l_a84vPZ_vT89Zyrua2A8moEnVQbzonmekp5nToewGODm5gRLJOcGk9EIXtMFBMqZd8YF4w4jt23JxtXJfMrb7L41Rn0cmM-k8h5YM2eR5tAN0pgSlWhAJ03FY89tYbZbDhfc8drqx3G6u--9cCZdbTWCyEYCKkpWiiqKi_hhmp0t0mPZhKHqNPcza2LgfTaFMEP9b6qZC9xF3HRTWIzWBzKiWD_zcrwXoNUf8NUa8h6qcQq-_95lt75Mk8pBycns1jSNlnE-1YNPs_4jd6sqGz</recordid><startdate>20160703</startdate><enddate>20160703</enddate><creator>Zhao, Zhihong</creator><creator>Lin, Yingzhen</creator><creator>Niu, Jing</creator><general>Taylor &amp; Francis</general><general>Vilnius Gediminas Technical University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope></search><sort><creationdate>20160703</creationdate><title>Convergence Order of the Reproducing Kernel Method for Solving Boundary Value Problems</title><author>Zhao, Zhihong ; Lin, Yingzhen ; Niu, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-7e63285164fa7d63a92042b995ed2bdb31637546cfe180cbb2022f64b3f531f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adjoints</topic><topic>boundary value problem</topic><topic>Boundary value problems</topic><topic>Convergence</topic><topic>Convergence (Mathematics)</topic><topic>convergence analysis</topic><topic>Equivalence</topic><topic>Kernel functions</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical research</topic><topic>Operators (mathematics)</topic><topic>reproducing kernel method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zhihong</creatorcontrib><creatorcontrib>Lin, Yingzhen</creatorcontrib><creatorcontrib>Niu, Jing</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematical modelling and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Zhihong</au><au>Lin, Yingzhen</au><au>Niu, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence Order of the Reproducing Kernel Method for Solving Boundary Value Problems</atitle><jtitle>Mathematical modelling and analysis</jtitle><date>2016-07-03</date><risdate>2016</risdate><volume>21</volume><issue>4</issue><spage>466</spage><epage>477</epage><pages>466-477</pages><issn>1392-6292</issn><eissn>1648-3510</eissn><abstract>In this paper, convergence rate of the reproducing kernel method for solving boundary value problems is studied. The equivalence of two reproducing kernel spaces and some results of adjoint operator are proved. Based on the classical properties of piecewise linear interpolating function, we provide the convergence rate analysis of at least second order. Moreover, some numerical examples showing the accuracy of the proposed estimations are also given.</abstract><pub>Taylor &amp; Francis</pub><doi>10.3846/13926292.2016.1183240</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1392-6292
ispartof Mathematical modelling and analysis, 2016-07, Vol.21 (4), p.466-477
issn 1392-6292
1648-3510
language eng
recordid cdi_crossref_primary_10_3846_13926292_2016_1183240
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adjoints
boundary value problem
Boundary value problems
Convergence
Convergence (Mathematics)
convergence analysis
Equivalence
Kernel functions
Kernels
Mathematical analysis
Mathematical models
Mathematical research
Operators (mathematics)
reproducing kernel method
title Convergence Order of the Reproducing Kernel Method for Solving Boundary Value Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20Order%20of%20the%20Reproducing%20Kernel%20Method%20for%20Solving%20Boundary%20Value%20Problems&rft.jtitle=Mathematical%20modelling%20and%20analysis&rft.au=Zhao,%20Zhihong&rft.date=2016-07-03&rft.volume=21&rft.issue=4&rft.spage=466&rft.epage=477&rft.pages=466-477&rft.issn=1392-6292&rft.eissn=1648-3510&rft_id=info:doi/10.3846/13926292.2016.1183240&rft_dat=%3Cgale_cross%3EA569607745%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825552031&rft_id=info:pmid/&rft_galeid=A569607745&rft_doaj_id=oai_doaj_org_article_785020812ee74cd2b0fcfa8a0a4994d0&rfr_iscdi=true