Convergence Order of the Reproducing Kernel Method for Solving Boundary Value Problems
In this paper, convergence rate of the reproducing kernel method for solving boundary value problems is studied. The equivalence of two reproducing kernel spaces and some results of adjoint operator are proved. Based on the classical properties of piecewise linear interpolating function, we provide...
Gespeichert in:
Veröffentlicht in: | Mathematical modelling and analysis 2016-07, Vol.21 (4), p.466-477 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 477 |
---|---|
container_issue | 4 |
container_start_page | 466 |
container_title | Mathematical modelling and analysis |
container_volume | 21 |
creator | Zhao, Zhihong Lin, Yingzhen Niu, Jing |
description | In this paper, convergence rate of the reproducing kernel method for solving boundary value problems is studied. The equivalence of two reproducing kernel spaces and some results of adjoint operator are proved. Based on the classical properties of piecewise linear interpolating function, we provide the convergence rate analysis of at least second order. Moreover, some numerical examples showing the accuracy of the proposed estimations are also given. |
doi_str_mv | 10.3846/13926292.2016.1183240 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3846_13926292_2016_1183240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A569607745</galeid><doaj_id>oai_doaj_org_article_785020812ee74cd2b0fcfa8a0a4994d0</doaj_id><sourcerecordid>A569607745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-7e63285164fa7d63a92042b995ed2bdb31637546cfe180cbb2022f64b3f531f73</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhSMEEqXwE5C8ZJNbv-PsKFc8KopaFejWcuzxbSrHLnbSqv8ehxSWyAtb43O-Gfs0zVuCd0xxeUJYTyXt6Y5iIneEKEY5ftYcEclVywTBz-u5atpV9LJ5VcotxkJQhY-a632K95APEC2gi-wgo-TRfAPoCu5ycosd4wF9hRwhoG8w3ySHfMroewr3682HtERn8iO6NmEBdJnTEGAqr5sX3oQCb5724-bnp48_9l_a84vPZ_vT89Zyrua2A8moEnVQbzonmekp5nToewGODm5gRLJOcGk9EIXtMFBMqZd8YF4w4jt23JxtXJfMrb7L41Rn0cmM-k8h5YM2eR5tAN0pgSlWhAJ03FY89tYbZbDhfc8drqx3G6u--9cCZdbTWCyEYCKkpWiiqKi_hhmp0t0mPZhKHqNPcza2LgfTaFMEP9b6qZC9xF3HRTWIzWBzKiWD_zcrwXoNUf8NUa8h6qcQq-_95lt75Mk8pBycns1jSNlnE-1YNPs_4jd6sqGz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825552031</pqid></control><display><type>article</type><title>Convergence Order of the Reproducing Kernel Method for Solving Boundary Value Problems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhao, Zhihong ; Lin, Yingzhen ; Niu, Jing</creator><creatorcontrib>Zhao, Zhihong ; Lin, Yingzhen ; Niu, Jing</creatorcontrib><description>In this paper, convergence rate of the reproducing kernel method for solving boundary value problems is studied. The equivalence of two reproducing kernel spaces and some results of adjoint operator are proved. Based on the classical properties of piecewise linear interpolating function, we provide the convergence rate analysis of at least second order. Moreover, some numerical examples showing the accuracy of the proposed estimations are also given.</description><identifier>ISSN: 1392-6292</identifier><identifier>EISSN: 1648-3510</identifier><identifier>DOI: 10.3846/13926292.2016.1183240</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>Adjoints ; boundary value problem ; Boundary value problems ; Convergence ; Convergence (Mathematics) ; convergence analysis ; Equivalence ; Kernel functions ; Kernels ; Mathematical analysis ; Mathematical models ; Mathematical research ; Operators (mathematics) ; reproducing kernel method</subject><ispartof>Mathematical modelling and analysis, 2016-07, Vol.21 (4), p.466-477</ispartof><rights>2016 Vilnius Gediminas Technical University 2016</rights><rights>COPYRIGHT 2016 Vilnius Gediminas Technical University</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-7e63285164fa7d63a92042b995ed2bdb31637546cfe180cbb2022f64b3f531f73</citedby><cites>FETCH-LOGICAL-c448t-7e63285164fa7d63a92042b995ed2bdb31637546cfe180cbb2022f64b3f531f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhao, Zhihong</creatorcontrib><creatorcontrib>Lin, Yingzhen</creatorcontrib><creatorcontrib>Niu, Jing</creatorcontrib><title>Convergence Order of the Reproducing Kernel Method for Solving Boundary Value Problems</title><title>Mathematical modelling and analysis</title><description>In this paper, convergence rate of the reproducing kernel method for solving boundary value problems is studied. The equivalence of two reproducing kernel spaces and some results of adjoint operator are proved. Based on the classical properties of piecewise linear interpolating function, we provide the convergence rate analysis of at least second order. Moreover, some numerical examples showing the accuracy of the proposed estimations are also given.</description><subject>Adjoints</subject><subject>boundary value problem</subject><subject>Boundary value problems</subject><subject>Convergence</subject><subject>Convergence (Mathematics)</subject><subject>convergence analysis</subject><subject>Equivalence</subject><subject>Kernel functions</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematical research</subject><subject>Operators (mathematics)</subject><subject>reproducing kernel method</subject><issn>1392-6292</issn><issn>1648-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUtv1TAQhSMEEqXwE5C8ZJNbv-PsKFc8KopaFejWcuzxbSrHLnbSqv8ehxSWyAtb43O-Gfs0zVuCd0xxeUJYTyXt6Y5iIneEKEY5ftYcEclVywTBz-u5atpV9LJ5VcotxkJQhY-a632K95APEC2gi-wgo-TRfAPoCu5ycosd4wF9hRwhoG8w3ySHfMroewr3682HtERn8iO6NmEBdJnTEGAqr5sX3oQCb5724-bnp48_9l_a84vPZ_vT89Zyrua2A8moEnVQbzonmekp5nToewGODm5gRLJOcGk9EIXtMFBMqZd8YF4w4jt23JxtXJfMrb7L41Rn0cmM-k8h5YM2eR5tAN0pgSlWhAJ03FY89tYbZbDhfc8drqx3G6u--9cCZdbTWCyEYCKkpWiiqKi_hhmp0t0mPZhKHqNPcza2LgfTaFMEP9b6qZC9xF3HRTWIzWBzKiWD_zcrwXoNUf8NUa8h6qcQq-_95lt75Mk8pBycns1jSNlnE-1YNPs_4jd6sqGz</recordid><startdate>20160703</startdate><enddate>20160703</enddate><creator>Zhao, Zhihong</creator><creator>Lin, Yingzhen</creator><creator>Niu, Jing</creator><general>Taylor & Francis</general><general>Vilnius Gediminas Technical University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope></search><sort><creationdate>20160703</creationdate><title>Convergence Order of the Reproducing Kernel Method for Solving Boundary Value Problems</title><author>Zhao, Zhihong ; Lin, Yingzhen ; Niu, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-7e63285164fa7d63a92042b995ed2bdb31637546cfe180cbb2022f64b3f531f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adjoints</topic><topic>boundary value problem</topic><topic>Boundary value problems</topic><topic>Convergence</topic><topic>Convergence (Mathematics)</topic><topic>convergence analysis</topic><topic>Equivalence</topic><topic>Kernel functions</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematical research</topic><topic>Operators (mathematics)</topic><topic>reproducing kernel method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zhihong</creatorcontrib><creatorcontrib>Lin, Yingzhen</creatorcontrib><creatorcontrib>Niu, Jing</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematical modelling and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Zhihong</au><au>Lin, Yingzhen</au><au>Niu, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence Order of the Reproducing Kernel Method for Solving Boundary Value Problems</atitle><jtitle>Mathematical modelling and analysis</jtitle><date>2016-07-03</date><risdate>2016</risdate><volume>21</volume><issue>4</issue><spage>466</spage><epage>477</epage><pages>466-477</pages><issn>1392-6292</issn><eissn>1648-3510</eissn><abstract>In this paper, convergence rate of the reproducing kernel method for solving boundary value problems is studied. The equivalence of two reproducing kernel spaces and some results of adjoint operator are proved. Based on the classical properties of piecewise linear interpolating function, we provide the convergence rate analysis of at least second order. Moreover, some numerical examples showing the accuracy of the proposed estimations are also given.</abstract><pub>Taylor & Francis</pub><doi>10.3846/13926292.2016.1183240</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1392-6292 |
ispartof | Mathematical modelling and analysis, 2016-07, Vol.21 (4), p.466-477 |
issn | 1392-6292 1648-3510 |
language | eng |
recordid | cdi_crossref_primary_10_3846_13926292_2016_1183240 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adjoints boundary value problem Boundary value problems Convergence Convergence (Mathematics) convergence analysis Equivalence Kernel functions Kernels Mathematical analysis Mathematical models Mathematical research Operators (mathematics) reproducing kernel method |
title | Convergence Order of the Reproducing Kernel Method for Solving Boundary Value Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20Order%20of%20the%20Reproducing%20Kernel%20Method%20for%20Solving%20Boundary%20Value%20Problems&rft.jtitle=Mathematical%20modelling%20and%20analysis&rft.au=Zhao,%20Zhihong&rft.date=2016-07-03&rft.volume=21&rft.issue=4&rft.spage=466&rft.epage=477&rft.pages=466-477&rft.issn=1392-6292&rft.eissn=1648-3510&rft_id=info:doi/10.3846/13926292.2016.1183240&rft_dat=%3Cgale_cross%3EA569607745%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825552031&rft_id=info:pmid/&rft_galeid=A569607745&rft_doaj_id=oai_doaj_org_article_785020812ee74cd2b0fcfa8a0a4994d0&rfr_iscdi=true |