Convergence Order of the Reproducing Kernel Method for Solving Boundary Value Problems

In this paper, convergence rate of the reproducing kernel method for solving boundary value problems is studied. The equivalence of two reproducing kernel spaces and some results of adjoint operator are proved. Based on the classical properties of piecewise linear interpolating function, we provide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical modelling and analysis 2016-07, Vol.21 (4), p.466-477
Hauptverfasser: Zhao, Zhihong, Lin, Yingzhen, Niu, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, convergence rate of the reproducing kernel method for solving boundary value problems is studied. The equivalence of two reproducing kernel spaces and some results of adjoint operator are proved. Based on the classical properties of piecewise linear interpolating function, we provide the convergence rate analysis of at least second order. Moreover, some numerical examples showing the accuracy of the proposed estimations are also given.
ISSN:1392-6292
1648-3510
DOI:10.3846/13926292.2016.1183240