Existence and Numerical Approximation of Solutions of an Improved Internal Wave Model

In this paper we establish local existence of solutions for a new model to describe the propagation of an internal wave propagating at the interface of two immiscible fluids with constant densities, contained at rest in a long channel with a horizontal rigid top and bottom. We also introduce a spect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical modelling and analysis 2014-06, Vol.19 (3), p.309-333
1. Verfasser: Grajales, Juan Carlos Muñoz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 333
container_issue 3
container_start_page 309
container_title Mathematical modelling and analysis
container_volume 19
creator Grajales, Juan Carlos Muñoz
description In this paper we establish local existence of solutions for a new model to describe the propagation of an internal wave propagating at the interface of two immiscible fluids with constant densities, contained at rest in a long channel with a horizontal rigid top and bottom. We also introduce a spectral-type numerical scheme to approximate the solutions of the corresponding Cauchy problem and perform a complete error analysis of the semidiscrete scheme.
doi_str_mv 10.3846/13926292.2014.924039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3846_13926292_2014_924039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b0f95b83a37a4e7c8665454c2237e795</doaj_id><sourcerecordid>1671589191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-602d993d2ab63adeb1fb4079d560f22fa9e19e566ad6f72d2e39ed27a6a3b5d83</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSNEJUrhDVhkySYX_ydeoaoq5UoFFrTq0prYY-QqsS92bmnfvg4Blqx8bH3nzFinad5RsuODUB8o10wxzXaMULHTTBCuXzSnVImh45KSl1VXpFuZV83rUu4JkZIN5LS5vXwMZcFosYXo2q_HGXOwMLXnh0NOj2GGJaTYJt9-T9Nx1WW9QGz3cwUe0LX7uGCO1XIHD9h-SQ6nN82Jh6ng2z_nWXP76fLm4nN3_e1qf3F-3VlB1NIpwpzW3DEYFQeHI_WjIL12UhHPmAeNVKNUCpzyPXMMuUbHelDAR-kGftbst1yX4N4ccl03P5kEwfx-SPmHgbwEO6EZiddyHDjwHgT2dlBKCiksY7zHXsua9X7Lqt_6ecSymDkUi9MEEdOxGKp6KgdNNa2o2FCbUykZ_b_RlJi1EfO3EbM2YrZGqu3jZgvRpzzDr5QnZxZ4mlL2GaINxfD_JjwDXfKR2A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671589191</pqid></control><display><type>article</type><title>Existence and Numerical Approximation of Solutions of an Improved Internal Wave Model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Grajales, Juan Carlos Muñoz</creator><creatorcontrib>Grajales, Juan Carlos Muñoz</creatorcontrib><description>In this paper we establish local existence of solutions for a new model to describe the propagation of an internal wave propagating at the interface of two immiscible fluids with constant densities, contained at rest in a long channel with a horizontal rigid top and bottom. We also introduce a spectral-type numerical scheme to approximate the solutions of the corresponding Cauchy problem and perform a complete error analysis of the semidiscrete scheme.</description><identifier>ISSN: 1392-6292</identifier><identifier>EISSN: 1648-3510</identifier><identifier>DOI: 10.3846/13926292.2014.924039</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Approximation ; Cauchy problem ; Channels ; Constants ; Density ; error estimates ; Horizontal ; Internal waves ; Mathematical models ; numerical solution ; Wave propagation</subject><ispartof>Mathematical modelling and analysis, 2014-06, Vol.19 (3), p.309-333</ispartof><rights>Vilnius Gediminas Technical University, 2014 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-602d993d2ab63adeb1fb4079d560f22fa9e19e566ad6f72d2e39ed27a6a3b5d83</citedby><cites>FETCH-LOGICAL-c406t-602d993d2ab63adeb1fb4079d560f22fa9e19e566ad6f72d2e39ed27a6a3b5d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Grajales, Juan Carlos Muñoz</creatorcontrib><title>Existence and Numerical Approximation of Solutions of an Improved Internal Wave Model</title><title>Mathematical modelling and analysis</title><description>In this paper we establish local existence of solutions for a new model to describe the propagation of an internal wave propagating at the interface of two immiscible fluids with constant densities, contained at rest in a long channel with a horizontal rigid top and bottom. We also introduce a spectral-type numerical scheme to approximate the solutions of the corresponding Cauchy problem and perform a complete error analysis of the semidiscrete scheme.</description><subject>Approximation</subject><subject>Cauchy problem</subject><subject>Channels</subject><subject>Constants</subject><subject>Density</subject><subject>error estimates</subject><subject>Horizontal</subject><subject>Internal waves</subject><subject>Mathematical models</subject><subject>numerical solution</subject><subject>Wave propagation</subject><issn>1392-6292</issn><issn>1648-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc1u1TAQhSNEJUrhDVhkySYX_ydeoaoq5UoFFrTq0prYY-QqsS92bmnfvg4Blqx8bH3nzFinad5RsuODUB8o10wxzXaMULHTTBCuXzSnVImh45KSl1VXpFuZV83rUu4JkZIN5LS5vXwMZcFosYXo2q_HGXOwMLXnh0NOj2GGJaTYJt9-T9Nx1WW9QGz3cwUe0LX7uGCO1XIHD9h-SQ6nN82Jh6ng2z_nWXP76fLm4nN3_e1qf3F-3VlB1NIpwpzW3DEYFQeHI_WjIL12UhHPmAeNVKNUCpzyPXMMuUbHelDAR-kGftbst1yX4N4ccl03P5kEwfx-SPmHgbwEO6EZiddyHDjwHgT2dlBKCiksY7zHXsua9X7Lqt_6ecSymDkUi9MEEdOxGKp6KgdNNa2o2FCbUykZ_b_RlJi1EfO3EbM2YrZGqu3jZgvRpzzDr5QnZxZ4mlL2GaINxfD_JjwDXfKR2A</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Grajales, Juan Carlos Muñoz</creator><general>Taylor &amp; Francis</general><general>Vilnius Gediminas Technical University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope></search><sort><creationdate>20140601</creationdate><title>Existence and Numerical Approximation of Solutions of an Improved Internal Wave Model</title><author>Grajales, Juan Carlos Muñoz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-602d993d2ab63adeb1fb4079d560f22fa9e19e566ad6f72d2e39ed27a6a3b5d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Cauchy problem</topic><topic>Channels</topic><topic>Constants</topic><topic>Density</topic><topic>error estimates</topic><topic>Horizontal</topic><topic>Internal waves</topic><topic>Mathematical models</topic><topic>numerical solution</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grajales, Juan Carlos Muñoz</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematical modelling and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grajales, Juan Carlos Muñoz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and Numerical Approximation of Solutions of an Improved Internal Wave Model</atitle><jtitle>Mathematical modelling and analysis</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>19</volume><issue>3</issue><spage>309</spage><epage>333</epage><pages>309-333</pages><issn>1392-6292</issn><eissn>1648-3510</eissn><abstract>In this paper we establish local existence of solutions for a new model to describe the propagation of an internal wave propagating at the interface of two immiscible fluids with constant densities, contained at rest in a long channel with a horizontal rigid top and bottom. We also introduce a spectral-type numerical scheme to approximate the solutions of the corresponding Cauchy problem and perform a complete error analysis of the semidiscrete scheme.</abstract><pub>Taylor &amp; Francis</pub><doi>10.3846/13926292.2014.924039</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1392-6292
ispartof Mathematical modelling and analysis, 2014-06, Vol.19 (3), p.309-333
issn 1392-6292
1648-3510
language eng
recordid cdi_crossref_primary_10_3846_13926292_2014_924039
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Approximation
Cauchy problem
Channels
Constants
Density
error estimates
Horizontal
Internal waves
Mathematical models
numerical solution
Wave propagation
title Existence and Numerical Approximation of Solutions of an Improved Internal Wave Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20Numerical%20Approximation%20of%20Solutions%20of%20an%20Improved%20Internal%20Wave%20Model&rft.jtitle=Mathematical%20modelling%20and%20analysis&rft.au=Grajales,%20Juan%20Carlos%20Mu%C3%B1oz&rft.date=2014-06-01&rft.volume=19&rft.issue=3&rft.spage=309&rft.epage=333&rft.pages=309-333&rft.issn=1392-6292&rft.eissn=1648-3510&rft_id=info:doi/10.3846/13926292.2014.924039&rft_dat=%3Cproquest_cross%3E1671589191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671589191&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_b0f95b83a37a4e7c8665454c2237e795&rfr_iscdi=true