Existence and Numerical Approximation of Solutions of an Improved Internal Wave Model
In this paper we establish local existence of solutions for a new model to describe the propagation of an internal wave propagating at the interface of two immiscible fluids with constant densities, contained at rest in a long channel with a horizontal rigid top and bottom. We also introduce a spect...
Gespeichert in:
Veröffentlicht in: | Mathematical modelling and analysis 2014-06, Vol.19 (3), p.309-333 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 333 |
---|---|
container_issue | 3 |
container_start_page | 309 |
container_title | Mathematical modelling and analysis |
container_volume | 19 |
creator | Grajales, Juan Carlos Muñoz |
description | In this paper we establish local existence of solutions for a new model to describe the propagation of an internal wave propagating at the interface of two immiscible fluids with constant densities, contained at rest in a long channel with a horizontal rigid top and bottom. We also introduce a spectral-type numerical scheme to approximate the solutions of the corresponding Cauchy problem and perform a complete error analysis of the semidiscrete scheme. |
doi_str_mv | 10.3846/13926292.2014.924039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3846_13926292_2014_924039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b0f95b83a37a4e7c8665454c2237e795</doaj_id><sourcerecordid>1671589191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-602d993d2ab63adeb1fb4079d560f22fa9e19e566ad6f72d2e39ed27a6a3b5d83</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhSNEJUrhDVhkySYX_ydeoaoq5UoFFrTq0prYY-QqsS92bmnfvg4Blqx8bH3nzFinad5RsuODUB8o10wxzXaMULHTTBCuXzSnVImh45KSl1VXpFuZV83rUu4JkZIN5LS5vXwMZcFosYXo2q_HGXOwMLXnh0NOj2GGJaTYJt9-T9Nx1WW9QGz3cwUe0LX7uGCO1XIHD9h-SQ6nN82Jh6ng2z_nWXP76fLm4nN3_e1qf3F-3VlB1NIpwpzW3DEYFQeHI_WjIL12UhHPmAeNVKNUCpzyPXMMuUbHelDAR-kGftbst1yX4N4ccl03P5kEwfx-SPmHgbwEO6EZiddyHDjwHgT2dlBKCiksY7zHXsua9X7Lqt_6ecSymDkUi9MEEdOxGKp6KgdNNa2o2FCbUykZ_b_RlJi1EfO3EbM2YrZGqu3jZgvRpzzDr5QnZxZ4mlL2GaINxfD_JjwDXfKR2A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671589191</pqid></control><display><type>article</type><title>Existence and Numerical Approximation of Solutions of an Improved Internal Wave Model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Grajales, Juan Carlos Muñoz</creator><creatorcontrib>Grajales, Juan Carlos Muñoz</creatorcontrib><description>In this paper we establish local existence of solutions for a new model to describe the propagation of an internal wave propagating at the interface of two immiscible fluids with constant densities, contained at rest in a long channel with a horizontal rigid top and bottom. We also introduce a spectral-type numerical scheme to approximate the solutions of the corresponding Cauchy problem and perform a complete error analysis of the semidiscrete scheme.</description><identifier>ISSN: 1392-6292</identifier><identifier>EISSN: 1648-3510</identifier><identifier>DOI: 10.3846/13926292.2014.924039</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>Approximation ; Cauchy problem ; Channels ; Constants ; Density ; error estimates ; Horizontal ; Internal waves ; Mathematical models ; numerical solution ; Wave propagation</subject><ispartof>Mathematical modelling and analysis, 2014-06, Vol.19 (3), p.309-333</ispartof><rights>Vilnius Gediminas Technical University, 2014 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-602d993d2ab63adeb1fb4079d560f22fa9e19e566ad6f72d2e39ed27a6a3b5d83</citedby><cites>FETCH-LOGICAL-c406t-602d993d2ab63adeb1fb4079d560f22fa9e19e566ad6f72d2e39ed27a6a3b5d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Grajales, Juan Carlos Muñoz</creatorcontrib><title>Existence and Numerical Approximation of Solutions of an Improved Internal Wave Model</title><title>Mathematical modelling and analysis</title><description>In this paper we establish local existence of solutions for a new model to describe the propagation of an internal wave propagating at the interface of two immiscible fluids with constant densities, contained at rest in a long channel with a horizontal rigid top and bottom. We also introduce a spectral-type numerical scheme to approximate the solutions of the corresponding Cauchy problem and perform a complete error analysis of the semidiscrete scheme.</description><subject>Approximation</subject><subject>Cauchy problem</subject><subject>Channels</subject><subject>Constants</subject><subject>Density</subject><subject>error estimates</subject><subject>Horizontal</subject><subject>Internal waves</subject><subject>Mathematical models</subject><subject>numerical solution</subject><subject>Wave propagation</subject><issn>1392-6292</issn><issn>1648-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc1u1TAQhSNEJUrhDVhkySYX_ydeoaoq5UoFFrTq0prYY-QqsS92bmnfvg4Blqx8bH3nzFinad5RsuODUB8o10wxzXaMULHTTBCuXzSnVImh45KSl1VXpFuZV83rUu4JkZIN5LS5vXwMZcFosYXo2q_HGXOwMLXnh0NOj2GGJaTYJt9-T9Nx1WW9QGz3cwUe0LX7uGCO1XIHD9h-SQ6nN82Jh6ng2z_nWXP76fLm4nN3_e1qf3F-3VlB1NIpwpzW3DEYFQeHI_WjIL12UhHPmAeNVKNUCpzyPXMMuUbHelDAR-kGftbst1yX4N4ccl03P5kEwfx-SPmHgbwEO6EZiddyHDjwHgT2dlBKCiksY7zHXsua9X7Lqt_6ecSymDkUi9MEEdOxGKp6KgdNNa2o2FCbUykZ_b_RlJi1EfO3EbM2YrZGqu3jZgvRpzzDr5QnZxZ4mlL2GaINxfD_JjwDXfKR2A</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Grajales, Juan Carlos Muñoz</creator><general>Taylor & Francis</general><general>Vilnius Gediminas Technical University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope></search><sort><creationdate>20140601</creationdate><title>Existence and Numerical Approximation of Solutions of an Improved Internal Wave Model</title><author>Grajales, Juan Carlos Muñoz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-602d993d2ab63adeb1fb4079d560f22fa9e19e566ad6f72d2e39ed27a6a3b5d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Cauchy problem</topic><topic>Channels</topic><topic>Constants</topic><topic>Density</topic><topic>error estimates</topic><topic>Horizontal</topic><topic>Internal waves</topic><topic>Mathematical models</topic><topic>numerical solution</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grajales, Juan Carlos Muñoz</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematical modelling and analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grajales, Juan Carlos Muñoz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and Numerical Approximation of Solutions of an Improved Internal Wave Model</atitle><jtitle>Mathematical modelling and analysis</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>19</volume><issue>3</issue><spage>309</spage><epage>333</epage><pages>309-333</pages><issn>1392-6292</issn><eissn>1648-3510</eissn><abstract>In this paper we establish local existence of solutions for a new model to describe the propagation of an internal wave propagating at the interface of two immiscible fluids with constant densities, contained at rest in a long channel with a horizontal rigid top and bottom. We also introduce a spectral-type numerical scheme to approximate the solutions of the corresponding Cauchy problem and perform a complete error analysis of the semidiscrete scheme.</abstract><pub>Taylor & Francis</pub><doi>10.3846/13926292.2014.924039</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1392-6292 |
ispartof | Mathematical modelling and analysis, 2014-06, Vol.19 (3), p.309-333 |
issn | 1392-6292 1648-3510 |
language | eng |
recordid | cdi_crossref_primary_10_3846_13926292_2014_924039 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Approximation Cauchy problem Channels Constants Density error estimates Horizontal Internal waves Mathematical models numerical solution Wave propagation |
title | Existence and Numerical Approximation of Solutions of an Improved Internal Wave Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20Numerical%20Approximation%20of%20Solutions%20of%20an%20Improved%20Internal%20Wave%20Model&rft.jtitle=Mathematical%20modelling%20and%20analysis&rft.au=Grajales,%20Juan%20Carlos%20Mu%C3%B1oz&rft.date=2014-06-01&rft.volume=19&rft.issue=3&rft.spage=309&rft.epage=333&rft.pages=309-333&rft.issn=1392-6292&rft.eissn=1648-3510&rft_id=info:doi/10.3846/13926292.2014.924039&rft_dat=%3Cproquest_cross%3E1671589191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671589191&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_b0f95b83a37a4e7c8665454c2237e795&rfr_iscdi=true |