Computing the Tracy-Widom Distribution for Arbitrary $\beta>0

We compute the Tracy-Widom distribution describing the asymptotic distribution of the largest eigenvalue of a large random matrix by solving a boundary-value problem posed by Bloemendal in his Ph.D. Thesis (2011). The distribution is computed in two ways. The first method is a second-order finite-di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, integrability and geometry, methods and applications integrability and geometry, methods and applications, 2024-01
Hauptverfasser: Trogdon, Thomas, Zhang, Yiting
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We compute the Tracy-Widom distribution describing the asymptotic distribution of the largest eigenvalue of a large random matrix by solving a boundary-value problem posed by Bloemendal in his Ph.D. Thesis (2011). The distribution is computed in two ways. The first method is a second-order finite-difference method and the second is a highly accurate Fourier spectral method. Since $\beta$ is simply a parameter in the boundary-value problem, any $\beta> 0$ can be used, in principle. The limiting distribution of the $n$th largest eigenvalue can also be computed. Our methods are available in the Julia package TracyWidomBeta.jl.
ISSN:1815-0659
1815-0659
DOI:10.3842/SIGMA.2024.005