Numerical Studies on Thermo-Hydraulic Characteristics of Turbulent Flow in a Tube with a Regularly Spaced Dimple on Twisted Tape

Heat transfer augmentation is an important concern due to the increase in heat management problems in thermal systems. There are many techniques for enhancement of heat transfer, by active and passive techniques. A commonly used passive technique to enhance heat transfer is by inserting twisted tape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CFD letters 2021-08, Vol.13 (8), p.20-31
Hauptverfasser: Birlie Fekadu, Harish H.V, Manjunath. K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heat transfer augmentation is an important concern due to the increase in heat management problems in thermal systems. There are many techniques for enhancement of heat transfer, by active and passive techniques. A commonly used passive technique to enhance heat transfer is by inserting twisted tapes in tubes. This work presents a numerical study on Nusselt number, friction factor, and thermal performance characteristics through a circular pipe built-in with/without dimples on twisted tape. The analysis results for a turbulent flow range of 4500≤Re≤20000 are obtained with a twist ratio of the strip is 3.0. The analysis is carried for full-length tape with constant heat flux. The governing equations are numerically solved by a finite volume method using the RNG κ–ε model. The simulation results of Nusselt number versus Reynolds number of the plain, plain twisted tape and dimple twisted tape tube with the experimental data give a variation of 4.15%, 3.89%, and 7.65%. The friction factor of the dimple twisted tape tube is 60 to 70% higher than that of the plain twisted tube at different Reynolds numbers. The thermal performance factor of the dimple twisted tape and plain twisted tape tube is 30 to 35% respectively higher than that of the plain tube. Due to thermal performance factor is above unity yields a promising heat transfer enhancement. By the present study, an optimum geometrical parameter can be selected for use in heat exchangers.
ISSN:2180-1363
2180-1363
DOI:10.37934/cfdl.13.8.2031