Machine Learning Approach Based on Smart Ball COMSOL Multiphysics Simulation for Pipe Leak Detection

Due to the changing flow conditions during the pipeline’s operation, several locations of erosion, damage, and failure occur. Leak prevention and early leak detection techniques are the best pipeline risk mitigation measures. To reduce detection time, pipeline models that can simulate these breaches...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iraqi journal for electrical and electronic engineering 2023-06, Vol.19 (1), p.100-110
Hauptverfasser: Abed, Marwa, Wali, Wasan, Alaziz, Musaab
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Due to the changing flow conditions during the pipeline’s operation, several locations of erosion, damage, and failure occur. Leak prevention and early leak detection techniques are the best pipeline risk mitigation measures. To reduce detection time, pipeline models that can simulate these breaches are essential. In this study, numerical modeling using COMSOL Multiphysics is suggested for different fluid types, velocities, pressure distributions, and temperature distributions. The system consists of 12 meters of 8-inch pipe. A movable ball with a diameter of 5 inches is placed within. The findings show that dead zones happen more often in oil than in gas. Pipe insulation is facilitated by the gas phase’s thermal inefficiency (thermal conductivity). The fluid mixing is improved by 2.5 m/s when the temperature is the lowest. More than water and gas, oil viscosity and dead zones lower maximum pressure. Pressure decreases with maximum velocity and vice versa. The acquired oil data set is utilized to calibrate the Support Vector Machine and Decision Tree techniques using MATLAB R2021a, ensuring the precision of the measurement. The classification result reveals that the Support Vector Machine (SVM) and Decision Tree (DT) models have the best average accuracy, which is 98.8%, and 99.87 %, respectively.
ISSN:1814-5892
2078-6069
DOI:10.37917/ijeee.19.1.13