pKalculator: A p K a predictor for C-H bonds

Determining the p values of various C-H sites in organic molecules offers valuable insights for synthetic chemists in predicting reaction sites. As molecular complexity increases, this task becomes more challenging. This paper introduces pKalculator, a quantum chemistry (QM)-based workflow for autom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Beilstein journal of organic chemistry 2024-07, Vol.20, p.1614-1622
Hauptverfasser: Borup, Rasmus M, Ree, Nicolai, Jensen, Jan H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Determining the p values of various C-H sites in organic molecules offers valuable insights for synthetic chemists in predicting reaction sites. As molecular complexity increases, this task becomes more challenging. This paper introduces pKalculator, a quantum chemistry (QM)-based workflow for automatic computations of C-H p values, which is used to generate a training dataset for a machine learning (ML) model. The QM workflow is benchmarked against 695 experimentally determined C-H p values in DMSO. The ML model is trained on a diverse dataset of 775 molecules with 3910 C-H sites. Our ML model predicts C-H p values with a mean absolute error (MAE) and a root mean squared error (RMSE) of 1.24 and 2.15 p units, respectively. Furthermore, we employ our model on 1043 p -dependent reactions (aldol, Claisen, and Michael) and successfully indicate the reaction sites with a Matthew's correlation coefficient (MCC) of 0.82.
ISSN:1860-5397
1860-5397
DOI:10.3762/bjoc.20.144