Overall Performance of a Centrifugal Vaned Diffuser Pump for Different Flow Rates, Experimental and Numerical Comparisons

The article presents the analysis of the interactions between the impeller and the vaned diffuser of a radial flow pump. The tests were carried out on the so-called SHF impeller, coupled with a vaned diffuser, and working with air. The particularity of this machine is that the diffuser design flow r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:WSEAS TRANSACTIONS ON FLUID MECHANICS 2020-04, Vol.15, p.121-130
Hauptverfasser: Terki Hassaine, Taha El Amine, Seddini, Abdelali, Bouchelkia, Hamid
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The article presents the analysis of the interactions between the impeller and the vaned diffuser of a radial flow pump. The tests were carried out on the so-called SHF impeller, coupled with a vaned diffuser, and working with air. The particularity of this machine is that the diffuser design flow rate corresponds to 80% of the impeller one. All experimental works were performed at the Fluid Mechanics Laboratory in ENSAM, Lille, France. Investigations have been made for five different flow rates. Global performances of the machine are evaluated thanks to pressure measurements and averaged velocities obtain with a three hole probe, at nine angular positions at diffuser inlet and outlet just as five radial positions in a middle section of a blade-to-blade passage. A post-processing procedure, based on statistical tools, was applied to the experimental results in order to reach a better understanding of the phenomena. In another approach, a numerical simulation of the flow inside the pump, for eight different relative angular positions of the diffuser relative to the impeller (Frozen rotor) was performed by the STAR-CCM+ software. The experimental results were compared to numerical data obtained with the help of STAR-CCM+ computer code.
ISSN:1790-5087
DOI:10.37394/232013.2020.15.12