Flexural Modulus and Strength of Cold Cured Poly(methylmethacrylate) Reinforced with TiO2 Nano Particles
The most significant disadvantage of cold cured poly (methyl methacrylate) - PMMA is its poor mechanical properties, mainly in flexure. The aim of this work is to explore the modulus and flexural strength of modified cold cured PMMA modified with low TiO2 addition, which can also have antibacterial...
Gespeichert in:
Veröffentlicht in: | Materiale Plastice 2021-01, Vol.57 (4), p.13-20 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The most significant disadvantage of cold cured poly (methyl methacrylate) - PMMA is its poor mechanical properties, mainly in flexure. The aim of this work is to explore the modulus and flexural strength of modified cold cured PMMA modified with low TiO2 addition, which can also have antibacterial properties. Commercial cold cured PMMA resin, consisting of powder and liquid components, were modified by adding 0.05 %, 0.2 %, and 1.5 wt. % 20 nm hydrophobic TiO2. The specimen s flexural modulus and strength were tested, while heat properties were determined with DSC analysis. SEM and EDX were used to study fracture surfaces of tested specimens. In all modified specimens, an increased flexural modulus and flexural strength were recorded. In all specimens, the appearance of agglomerates was noted. Glass transition temperatures also increased, as the result of the appearance of polymer chains with reduced mobility around nanoparticles. 0.2 % of 20 nm TiO2 nanoparticle content proved to be the most efficient in increasing flexural modulus and strength. |
---|---|
ISSN: | 0025-5289 2668-8220 |
DOI: | 10.37358/MP.20.4.5402 |