The Hydrophily of Some Lacquers for Electrical Use
Through gravimetric determinations, volume resistivity, dielectric spectroscopy, and comparative thermal analysis (TG, DTA and DTG), the interactions between the distilled water and three different types of alkyd-epoxy-melamine, epoxy and polyurethane lacquers were studied. From the experimental det...
Gespeichert in:
Veröffentlicht in: | Materiale Plastice 2020-03, Vol.57 (1), p.122-132 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Through gravimetric determinations, volume resistivity, dielectric spectroscopy, and comparative thermal analysis (TG, DTA and DTG), the interactions between the distilled water and three different types of alkyd-epoxy-melamine, epoxy and polyurethane lacquers were studied. From the experimental determinations it was found that after 700 h of immersion in water at 20 2 C the alkyd-epoxy-melamine based lacquer has a maximum water uptake, respectively 1.76%, followed by the epoxy lacquer 1.4% and polyurethane 0.93%. The thermal analysis sugests that because the water retained by the investigated polymers does not change the TG diagrams in the temperature range up to 150 C, which suggests that the weight increase of the samples during the immersion could be due to some chemical processes between the water and polymer by which the chemistry structure of the polymer changes. Through electrical measurementes one can observe that after the immersion in water (over 700 hours), dielectric loss increases and the volume resistivity (measured in DC) of the investigated lakes decreases, which is explained by the increasing of polar groups (-OH) in the polymer structure. A comparative analysis of the experimental data reveals that in electrical applications the lacquer LS (polyurethane) is superior to the lacquers L-528 (alkyd-epoxy-melamine) and LG (epoxy), because it has no mass losses (structural changes) up to 280 C it has a volume resistivity of about 21 % higher than L-G, and about 300 % higher than L-528, and has water uptake and dielectric loss substantially lower comparing to L-528 and L-G. |
---|---|
ISSN: | 0025-5289 2668-8220 |
DOI: | 10.37358/MP.20.1.5319 |