Comparative Study on Plastic Materials as a New Source of Energy
The pyrolysis can be an attractive way to reduce the plastic waste and, in the same time, to obtain alternative conventional fuels. In this respect, four polymers (low-density polyethylene, high-density polyethylene, propylene and polystyrene) were used in the pyrolysis process. The experiments were...
Gespeichert in:
Veröffentlicht in: | Materiale Plastice 2019-03, Vol.56 (1), p.41-46 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The pyrolysis can be an attractive way to reduce the plastic waste and, in the same time, to obtain alternative conventional fuels. In this respect, four polymers (low-density polyethylene, high-density polyethylene, propylene and polystyrene) were used in the pyrolysis process. The experiments were carried out by using an in-house plant, which allowed a maximum test temperature of 450 C. The product oil and the derived gas from the pyrolysis process were evaluated using different techniques, such as elemental analysis (EA), calorimetry, gas chromatography (GC), gas chromatography coupled with mass spectrometry (GC-MS). Furthermore, for a comparative study two catalysts, zeolite and lignite, were also used for the pyrolysis process, in order to observe their influences on the final products. The higher heating value obtained for the oil was in the 40.17-45.35 MJ/kg range, acceptable for the use of these oil as an alternative fuel for diesel engine. Also, the sulphur content from the obtained oil does not cause environment problems, being lower than the allowed limits (10 mg/L). In addition, the pyrolysis derived gas was rich in hydrocarbons, conducting to a high calorific value, in the 73.42 - 121.18 MJ/kg range. |
---|---|
ISSN: | 0025-5289 2668-8220 |
DOI: | 10.37358/MP.19.1.5119 |