Discrete Quantitative Nodal Theorem

We prove a theorem that can be thought of as a common generalization of the Discrete Nodal Theorem and (one direction of) Cheeger's Inequality for graphs. A special case of this result will assert that if the second and third eigenvalues of the Laplacian are at least $\varepsilon$ apart, then t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2021-09, Vol.28 (3)
1. Verfasser: Lovász, László
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a theorem that can be thought of as a common generalization of the Discrete Nodal Theorem and (one direction of) Cheeger's Inequality for graphs. A special case of this result will assert that if the second and third eigenvalues of the Laplacian are at least $\varepsilon$ apart, then the subgraphs induced by the positive and negative supports of the eigenvector belonging to $\lambda_2$ are not only connected, but edge-expanders (in a weighted sense, with expansion depending on $\varepsilon$).
ISSN:1077-8926
1077-8926
DOI:10.37236/9944