Discrete Quantitative Nodal Theorem
We prove a theorem that can be thought of as a common generalization of the Discrete Nodal Theorem and (one direction of) Cheeger's Inequality for graphs. A special case of this result will assert that if the second and third eigenvalues of the Laplacian are at least $\varepsilon$ apart, then t...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2021-09, Vol.28 (3) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a theorem that can be thought of as a common generalization of the Discrete Nodal Theorem and (one direction of) Cheeger's Inequality for graphs. A special case of this result will assert that if the second and third eigenvalues of the Laplacian are at least $\varepsilon$ apart, then the subgraphs induced by the positive and negative supports of the eigenvector belonging to $\lambda_2$ are not only connected, but edge-expanders (in a weighted sense, with expansion depending on $\varepsilon$). |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/9944 |