A New Upper Bound on Extremal Number of Even Cycles
In this paper, we prove $\mathrm{ex}(n, C_{2k})\le (16\sqrt{5}\sqrt{k\log k} + o(1))\cdot n^{1+1/k}$. This improves on a result of Bukh and Jiang from 2017, thereby reducing the best known upper bound by a factor of $\sqrt{5\log k}$.
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2021-06, Vol.28 (2) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove $\mathrm{ex}(n, C_{2k})\le (16\sqrt{5}\sqrt{k\log k} + o(1))\cdot n^{1+1/k}$. This improves on a result of Bukh and Jiang from 2017, thereby reducing the best known upper bound by a factor of $\sqrt{5\log k}$. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/9861 |