Two Color Off-diagonal Rado-type Numbers
We show that for any two linear homogeneous equations ${\cal E}_0,{\cal E}_1$, each with at least three variables and coefficients not all the same sign, any 2-coloring of ${\Bbb Z}^+$ admits monochromatic solutions of color 0 to ${\cal E}_0$ or monochromatic solutions of color 1 to ${\cal E}_1$. We...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2007-08, Vol.14 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that for any two linear homogeneous equations ${\cal E}_0,{\cal E}_1$, each with at least three variables and coefficients not all the same sign, any 2-coloring of ${\Bbb Z}^+$ admits monochromatic solutions of color 0 to ${\cal E}_0$ or monochromatic solutions of color 1 to ${\cal E}_1$. We define the 2-color off-diagonal Rado number $RR({\cal E}_0,{\cal E}_1)$ to be the smallest $N$ such that $[1,N]$ must admit such solutions. We determine a lower bound for $RR({\cal E}_0,{\cal E}_1)$ in certain cases when each ${\cal E}_i$ is of the form $a_1x_1+\dots+a_nx_n=z$ as well as find the exact value of $RR({\cal E}_0,{\cal E}_1)$ when each is of the form $x_1+a_2x_2+\dots+a_nx_n=z$. We then present a Maple package that determines upper bounds for off-diagonal Rado numbers of a few particular types, and use it to quickly prove two previous results for diagonal Rado numbers. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/971 |