On Graphs whose Orientations are Determined by their Hermitian Spectra

A mixed graph $D$ is obtained from a simple graph $G$, the underlying graph of $D$, by orienting some edges of $G$. A simple graph $G$ is said to be ODHS (all orientations of $G$ are determined by their $H$-spectra) if every two $H$-cospectral graphs in $\mathcal{D}(G)$ are switching equivalent to e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2020-09, Vol.27 (3)
Hauptverfasser: Wang, Yi, Yuan, Bo-Jun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A mixed graph $D$ is obtained from a simple graph $G$, the underlying graph of $D$, by orienting some edges of $G$. A simple graph $G$ is said to be ODHS (all orientations of $G$ are determined by their $H$-spectra) if every two $H$-cospectral graphs in $\mathcal{D}(G)$ are switching equivalent to each other, where $\mathcal{D}(G)$ is the set of all mixed graphs with $G$ as their underlying graph. In this paper, we characterize all bicyclic ODHS graphs and construct infinitely many ODHS graphs whose cycle spaces are of dimension $k$. For a  connected graph $G$ whose cycle space is of dimension $k$, we also obtain an achievable upper bound $2^{2k-1} + 2^{k-1}$ for the number of switching equivalence classes in $\mathcal{D}(G)$, which naturally is an upper bound of the number of  cospectral classes in $\mathcal{D}(G)$. To achieve these, we propose a valid method to estimate the number of switching equivalence classes in $\mathcal{D}(G)$ based on the strong cycle basis, a special cycle basis  introduced in this paper.
ISSN:1077-8926
1077-8926
DOI:10.37236/9640