On Graphs whose Orientations are Determined by their Hermitian Spectra
A mixed graph $D$ is obtained from a simple graph $G$, the underlying graph of $D$, by orienting some edges of $G$. A simple graph $G$ is said to be ODHS (all orientations of $G$ are determined by their $H$-spectra) if every two $H$-cospectral graphs in $\mathcal{D}(G)$ are switching equivalent to e...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2020-09, Vol.27 (3) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A mixed graph $D$ is obtained from a simple graph $G$, the underlying graph of $D$, by orienting some edges of $G$. A simple graph $G$ is said to be ODHS (all orientations of $G$ are determined by their $H$-spectra) if every two $H$-cospectral graphs in $\mathcal{D}(G)$ are switching equivalent to each other, where $\mathcal{D}(G)$ is the set of all mixed graphs with $G$ as their underlying graph. In this paper, we characterize all bicyclic ODHS graphs and construct infinitely many ODHS graphs whose cycle spaces are of dimension $k$. For a connected graph $G$ whose cycle space is of dimension $k$, we also obtain an achievable upper bound $2^{2k-1} + 2^{k-1}$ for the number of switching equivalence classes in $\mathcal{D}(G)$, which naturally is an upper bound of the number of cospectral classes in $\mathcal{D}(G)$. To achieve these, we propose a valid method to estimate the number of switching equivalence classes in $\mathcal{D}(G)$ based on the strong cycle basis, a special cycle basis introduced in this paper. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/9640 |