Tomaszewski's Problem on Randomly Signed sums, Revisited
Let $v_1,v_2,\ldots, v_n$ be real numbers whose squares add up to 1. Consider the $2^n$ signed sums of the form $S = \sum \pm v_i$. Boppana and Holzman (2017) proved that at least 13/32 of these sums satisfy $|S| \le 1$. Here we improve their bound to $0.427685$.
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2021-06, Vol.28 (2) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $v_1,v_2,\ldots, v_n$ be real numbers whose squares add up to 1. Consider the $2^n$ signed sums of the form $S = \sum \pm v_i$. Boppana and Holzman (2017) proved that at least 13/32 of these sums satisfy $|S| \le 1$. Here we improve their bound to $0.427685$. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/9497 |