Tomaszewski's Problem on Randomly Signed sums, Revisited

Let $v_1,v_2,\ldots, v_n$ be real numbers whose squares add up to 1.  Consider the $2^n$ signed sums of the form $S = \sum \pm v_i$.  Boppana and Holzman (2017) proved that at least 13/32 of these sums satisfy $|S| \le 1$.  Here we improve their bound to $0.427685$.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2021-06, Vol.28 (2)
Hauptverfasser: Boppana, Ravi B., Hendriks, Harrie, Van Zuijlen, Martien C.A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $v_1,v_2,\ldots, v_n$ be real numbers whose squares add up to 1.  Consider the $2^n$ signed sums of the form $S = \sum \pm v_i$.  Boppana and Holzman (2017) proved that at least 13/32 of these sums satisfy $|S| \le 1$.  Here we improve their bound to $0.427685$.
ISSN:1077-8926
1077-8926
DOI:10.37236/9497