Balancing Cyclic $R$-ary Gray Codes

New cyclic $n$-digit Gray codes are constructed over $\{0, 1, \ldots, R-1 \}$ for all $R \ge 3$, $n \ge 2$. These codes have the property that the distribution of the digit changes (transition counts) is close to uniform: For each $n \ge 2$, every transition count is within $R-1$ of the average $R^n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2007-04, Vol.14 (1)
Hauptverfasser: Flahive, Mary, Bose, Bella
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Electronic journal of combinatorics
container_volume 14
creator Flahive, Mary
Bose, Bella
description New cyclic $n$-digit Gray codes are constructed over $\{0, 1, \ldots, R-1 \}$ for all $R \ge 3$, $n \ge 2$. These codes have the property that the distribution of the digit changes (transition counts) is close to uniform: For each $n \ge 2$, every transition count is within $R-1$ of the average $R^n/n$, and for the $2$-digit codes every transition count is either $\lfloor{R^2/2} \rfloor$ or $\lceil{R^2/2} \rceil$.
doi_str_mv 10.37236/949
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-bac1e2a91b8a3a5646a2c7def675b87ab92ea8a8b8d2acca8a1eaee52e78c1c63</originalsourceid><addsrcrecordid>eNpNj81Kw0AURoei0Nr6DgGzHZ2508zPUoNWoSCUug53bm4kJW1lxk3e3qAuuvrO6uMcIVZa3RsHxj6EdZiJhVbOSR_AXl3wXNzkfFBKQwjVQtw94YAn6k-fRT3S0FNR7kqJaSw2CceiPrecV-K6wyHz7f8uxcfL875-ldv3zVv9uJUEOnzLiKQZMOjo0WBl1xaBXMuddVX0DmMARo8--haQaELNyFwBO0-arFmK8u-X0jnnxF3zlfrj5NJo1fyGNVOY-QEFNj5c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Balancing Cyclic $R$-ary Gray Codes</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Flahive, Mary ; Bose, Bella</creator><creatorcontrib>Flahive, Mary ; Bose, Bella</creatorcontrib><description>New cyclic $n$-digit Gray codes are constructed over $\{0, 1, \ldots, R-1 \}$ for all $R \ge 3$, $n \ge 2$. These codes have the property that the distribution of the digit changes (transition counts) is close to uniform: For each $n \ge 2$, every transition count is within $R-1$ of the average $R^n/n$, and for the $2$-digit codes every transition count is either $\lfloor{R^2/2} \rfloor$ or $\lceil{R^2/2} \rceil$.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/949</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2007-04, Vol.14 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-bac1e2a91b8a3a5646a2c7def675b87ab92ea8a8b8d2acca8a1eaee52e78c1c63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Flahive, Mary</creatorcontrib><creatorcontrib>Bose, Bella</creatorcontrib><title>Balancing Cyclic $R$-ary Gray Codes</title><title>The Electronic journal of combinatorics</title><description>New cyclic $n$-digit Gray codes are constructed over $\{0, 1, \ldots, R-1 \}$ for all $R \ge 3$, $n \ge 2$. These codes have the property that the distribution of the digit changes (transition counts) is close to uniform: For each $n \ge 2$, every transition count is within $R-1$ of the average $R^n/n$, and for the $2$-digit codes every transition count is either $\lfloor{R^2/2} \rfloor$ or $\lceil{R^2/2} \rceil$.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpNj81Kw0AURoei0Nr6DgGzHZ2508zPUoNWoSCUug53bm4kJW1lxk3e3qAuuvrO6uMcIVZa3RsHxj6EdZiJhVbOSR_AXl3wXNzkfFBKQwjVQtw94YAn6k-fRT3S0FNR7kqJaSw2CceiPrecV-K6wyHz7f8uxcfL875-ldv3zVv9uJUEOnzLiKQZMOjo0WBl1xaBXMuddVX0DmMARo8--haQaELNyFwBO0-arFmK8u-X0jnnxF3zlfrj5NJo1fyGNVOY-QEFNj5c</recordid><startdate>20070427</startdate><enddate>20070427</enddate><creator>Flahive, Mary</creator><creator>Bose, Bella</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20070427</creationdate><title>Balancing Cyclic $R$-ary Gray Codes</title><author>Flahive, Mary ; Bose, Bella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-bac1e2a91b8a3a5646a2c7def675b87ab92ea8a8b8d2acca8a1eaee52e78c1c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flahive, Mary</creatorcontrib><creatorcontrib>Bose, Bella</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flahive, Mary</au><au>Bose, Bella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Balancing Cyclic $R$-ary Gray Codes</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2007-04-27</date><risdate>2007</risdate><volume>14</volume><issue>1</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>New cyclic $n$-digit Gray codes are constructed over $\{0, 1, \ldots, R-1 \}$ for all $R \ge 3$, $n \ge 2$. These codes have the property that the distribution of the digit changes (transition counts) is close to uniform: For each $n \ge 2$, every transition count is within $R-1$ of the average $R^n/n$, and for the $2$-digit codes every transition count is either $\lfloor{R^2/2} \rfloor$ or $\lceil{R^2/2} \rceil$.</abstract><doi>10.37236/949</doi></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2007-04, Vol.14 (1)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_949
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Balancing Cyclic $R$-ary Gray Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Balancing%20Cyclic%20$R$-ary%20Gray%20Codes&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Flahive,%20Mary&rft.date=2007-04-27&rft.volume=14&rft.issue=1&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/949&rft_dat=%3Ccrossref%3E10_37236_949%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true