Balancing Cyclic $R$-ary Gray Codes

New cyclic $n$-digit Gray codes are constructed over $\{0, 1, \ldots, R-1 \}$ for all $R \ge 3$, $n \ge 2$. These codes have the property that the distribution of the digit changes (transition counts) is close to uniform: For each $n \ge 2$, every transition count is within $R-1$ of the average $R^n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2007-04, Vol.14 (1)
Hauptverfasser: Flahive, Mary, Bose, Bella
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New cyclic $n$-digit Gray codes are constructed over $\{0, 1, \ldots, R-1 \}$ for all $R \ge 3$, $n \ge 2$. These codes have the property that the distribution of the digit changes (transition counts) is close to uniform: For each $n \ge 2$, every transition count is within $R-1$ of the average $R^n/n$, and for the $2$-digit codes every transition count is either $\lfloor{R^2/2} \rfloor$ or $\lceil{R^2/2} \rceil$.
ISSN:1077-8926
1077-8926
DOI:10.37236/949