Balancing Cyclic $R$-ary Gray Codes
New cyclic $n$-digit Gray codes are constructed over $\{0, 1, \ldots, R-1 \}$ for all $R \ge 3$, $n \ge 2$. These codes have the property that the distribution of the digit changes (transition counts) is close to uniform: For each $n \ge 2$, every transition count is within $R-1$ of the average $R^n...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2007-04, Vol.14 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | New cyclic $n$-digit Gray codes are constructed over $\{0, 1, \ldots, R-1 \}$ for all $R \ge 3$, $n \ge 2$. These codes have the property that the distribution of the digit changes (transition counts) is close to uniform: For each $n \ge 2$, every transition count is within $R-1$ of the average $R^n/n$, and for the $2$-digit codes every transition count is either $\lfloor{R^2/2} \rfloor$ or $\lceil{R^2/2} \rceil$. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/949 |