On the Existence of Hamilton Cycles with a Periodic Pattern in a Random Digraph

We consider Hamilton cycles in the random digraph $D_{n,m}$ where the orientation of edges follows a pattern other than the trivial orientation in which the edges are oriented in the same direction as we traverse the cycle. We show that if the orientation forms a periodic pattern, other than the tri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2020-11, Vol.27 (4)
Hauptverfasser: Frieze, Alan, Pérez-Giménez, Xavier, Prałat, Paweł
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider Hamilton cycles in the random digraph $D_{n,m}$ where the orientation of edges follows a pattern other than the trivial orientation in which the edges are oriented in the same direction as we traverse the cycle. We show that if the orientation forms a periodic pattern, other than the trivial pattern, then approximately half the usual $n\log n$ edges are needed to guarantee the existence of such Hamilton cycles a.a.s.
ISSN:1077-8926
1077-8926
DOI:10.37236/9376