The Boolean Rainbow Ramsey Number of Antichains, Boolean Posets and Chains
Motivated by the paper, Boolean lattices: Ramsey properties and embeddings Order, 34 (2) (2017), of Axenovich and Walzer, we study the Ramsey-type problems on the Boolean lattices. Given posets $P$ and $Q$, we look for the smallest Boolean lattice $\mathcal{B}_N$ such that any coloring of elements o...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2020-11, Vol.27 (4) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by the paper, Boolean lattices: Ramsey properties and embeddings Order, 34 (2) (2017), of Axenovich and Walzer, we study the Ramsey-type problems on the Boolean lattices. Given posets $P$ and $Q$, we look for the smallest Boolean lattice $\mathcal{B}_N$ such that any coloring of elements of $\mathcal{B}_N$ must contain a monochromatic $P$ or a rainbow $Q$ as an induced subposet. This number $N$ is called the Boolean rainbow Ramsey number of $P$ and $Q$ in the paper.
Particularly, we determine the exact values of the Boolean rainbow Ramsey number for $P$ and $Q$ being the antichains, the Boolean posets, or the chains. From these results, we also derive some general upper and lower bounds of the Boolean rainbow Ramsey number for general $P$ and $Q$ in terms of the poset parameters. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/9034 |