The Boolean Rainbow Ramsey Number of Antichains, Boolean Posets and Chains

Motivated by the paper, Boolean lattices: Ramsey properties and embeddings Order, 34 (2) (2017), of Axenovich and Walzer, we study the Ramsey-type problems on the Boolean lattices. Given posets $P$ and $Q$, we look for the smallest Boolean lattice $\mathcal{B}_N$ such that any coloring of elements o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2020-11, Vol.27 (4)
Hauptverfasser: Chen, Hong-Bin, Cheng, Yen-Jen, Li, Wei-Tian, Liu, Chia-An
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by the paper, Boolean lattices: Ramsey properties and embeddings Order, 34 (2) (2017), of Axenovich and Walzer, we study the Ramsey-type problems on the Boolean lattices. Given posets $P$ and $Q$, we look for the smallest Boolean lattice $\mathcal{B}_N$ such that any coloring of elements of $\mathcal{B}_N$ must contain a monochromatic $P$ or a rainbow $Q$ as an induced subposet. This number $N$ is called the Boolean rainbow Ramsey number of $P$ and $Q$ in the paper. Particularly, we determine the exact values of the Boolean rainbow Ramsey number for $P$ and $Q$ being the antichains, the Boolean posets, or the chains. From these results, we also derive some general upper and lower bounds of the Boolean rainbow Ramsey number for general $P$ and $Q$ in terms of the poset parameters.
ISSN:1077-8926
1077-8926
DOI:10.37236/9034