On the 486-Vertex Distance-Regular Graphs of Koolen-Riebeek and Soicher

This paper considers three imprimitive distance-regular graphs with $486$ vertices and diameter $4$: the Koolen--Riebeek graph (which is bipartite), the Soicher graph (which is antipodal), and the incidence graph of a symmetric transversal design obtained from the affine geometry $\mathrm{AG}(5,3)$...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2020-07, Vol.27 (3)
Hauptverfasser: Bailey, Robert F., Hawtin, Daniel R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers three imprimitive distance-regular graphs with $486$ vertices and diameter $4$: the Koolen--Riebeek graph (which is bipartite), the Soicher graph (which is antipodal), and the incidence graph of a symmetric transversal design obtained from the affine geometry $\mathrm{AG}(5,3)$ (which is both). It is shown that each of these is preserved by the same rank-$9$ action of the group $3^5:(2\times M_{10})$, and the connection is explained using the ternary Golay code.
ISSN:1077-8926
1077-8926
DOI:10.37236/8954