On the 486-Vertex Distance-Regular Graphs of Koolen-Riebeek and Soicher
This paper considers three imprimitive distance-regular graphs with $486$ vertices and diameter $4$: the Koolen--Riebeek graph (which is bipartite), the Soicher graph (which is antipodal), and the incidence graph of a symmetric transversal design obtained from the affine geometry $\mathrm{AG}(5,3)$...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2020-07, Vol.27 (3) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper considers three imprimitive distance-regular graphs with $486$ vertices and diameter $4$: the Koolen--Riebeek graph (which is bipartite), the Soicher graph (which is antipodal), and the incidence graph of a symmetric transversal design obtained from the affine geometry $\mathrm{AG}(5,3)$ (which is both). It is shown that each of these is preserved by the same rank-$9$ action of the group $3^5:(2\times M_{10})$, and the connection is explained using the ternary Golay code. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/8954 |