Lozenge Tilings of Hexagons with Central Holes and Dents

Ciucu proved a simple product formula for the tiling number of a hexagon in which a chain of equilateral triangles of alternating orientations, called a `fern', has been removed from the center (Adv. Math. 2017). In this paper, we present a multi-parameter generalization of this work by giving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2020-03, Vol.27 (1)
1. Verfasser: Lai, Tri
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Electronic journal of combinatorics
container_volume 27
creator Lai, Tri
description Ciucu proved a simple product formula for the tiling number of a hexagon in which a chain of equilateral triangles of alternating orientations, called a `fern', has been removed from the center (Adv. Math. 2017). In this paper, we present a multi-parameter generalization of this work by giving an explicit tiling enumeration for a hexagon with three ferns removed, besides the central fern as in Ciucu's region, we remove two new ferns from two sides of the hexagon. Our result also implies a new `dual' of MacMahon's classical formula of boxed plane partitions, corresponding to the exterior of the union of three disjoint concave polygons obtained by turning 120 degrees after drawing each side.  
doi_str_mv 10.37236/8716
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_8716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_8716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-4c726ff2bc13b32cfee12f8584d001f9e0bbf00de25f5ca4381b6fc959d676f3</originalsourceid><addsrcrecordid>eNpNj7lOxDAURS0EEsMw_-CGMuAl3koUliBFokkfOc57mYyCjeJILF_PsBRU9-oWR_cQsuPsWhoh9Y01XJ-QDWfGFNYJffqvn5OLnA-MceGc2hDbpE-II9B2mqc4ZpqQ1vDuxxQzfZvWPa0groufaZ1myNTHgd4dl3xJztDPGXZ_uSXtw31b1UXz_PhU3TZFEEqsRRmM0IiiD1z2UgQE4AKtsuVw_IAOWN8jYwMIhSr4UlreawxOuUEbjXJLrn6xYUk5L4Dd6zK9-OWj46z7se2-beUX-gVGCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Lozenge Tilings of Hexagons with Central Holes and Dents</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lai, Tri</creator><creatorcontrib>Lai, Tri</creatorcontrib><description>Ciucu proved a simple product formula for the tiling number of a hexagon in which a chain of equilateral triangles of alternating orientations, called a `fern', has been removed from the center (Adv. Math. 2017). In this paper, we present a multi-parameter generalization of this work by giving an explicit tiling enumeration for a hexagon with three ferns removed, besides the central fern as in Ciucu's region, we remove two new ferns from two sides of the hexagon. Our result also implies a new `dual' of MacMahon's classical formula of boxed plane partitions, corresponding to the exterior of the union of three disjoint concave polygons obtained by turning 120 degrees after drawing each side.  </description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/8716</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2020-03, Vol.27 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c252t-4c726ff2bc13b32cfee12f8584d001f9e0bbf00de25f5ca4381b6fc959d676f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Lai, Tri</creatorcontrib><title>Lozenge Tilings of Hexagons with Central Holes and Dents</title><title>The Electronic journal of combinatorics</title><description>Ciucu proved a simple product formula for the tiling number of a hexagon in which a chain of equilateral triangles of alternating orientations, called a `fern', has been removed from the center (Adv. Math. 2017). In this paper, we present a multi-parameter generalization of this work by giving an explicit tiling enumeration for a hexagon with three ferns removed, besides the central fern as in Ciucu's region, we remove two new ferns from two sides of the hexagon. Our result also implies a new `dual' of MacMahon's classical formula of boxed plane partitions, corresponding to the exterior of the union of three disjoint concave polygons obtained by turning 120 degrees after drawing each side.  </description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNj7lOxDAURS0EEsMw_-CGMuAl3koUliBFokkfOc57mYyCjeJILF_PsBRU9-oWR_cQsuPsWhoh9Y01XJ-QDWfGFNYJffqvn5OLnA-MceGc2hDbpE-II9B2mqc4ZpqQ1vDuxxQzfZvWPa0groufaZ1myNTHgd4dl3xJztDPGXZ_uSXtw31b1UXz_PhU3TZFEEqsRRmM0IiiD1z2UgQE4AKtsuVw_IAOWN8jYwMIhSr4UlreawxOuUEbjXJLrn6xYUk5L4Dd6zK9-OWj46z7se2-beUX-gVGCw</recordid><startdate>20200320</startdate><enddate>20200320</enddate><creator>Lai, Tri</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200320</creationdate><title>Lozenge Tilings of Hexagons with Central Holes and Dents</title><author>Lai, Tri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-4c726ff2bc13b32cfee12f8584d001f9e0bbf00de25f5ca4381b6fc959d676f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Tri</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Tri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lozenge Tilings of Hexagons with Central Holes and Dents</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2020-03-20</date><risdate>2020</risdate><volume>27</volume><issue>1</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>Ciucu proved a simple product formula for the tiling number of a hexagon in which a chain of equilateral triangles of alternating orientations, called a `fern', has been removed from the center (Adv. Math. 2017). In this paper, we present a multi-parameter generalization of this work by giving an explicit tiling enumeration for a hexagon with three ferns removed, besides the central fern as in Ciucu's region, we remove two new ferns from two sides of the hexagon. Our result also implies a new `dual' of MacMahon's classical formula of boxed plane partitions, corresponding to the exterior of the union of three disjoint concave polygons obtained by turning 120 degrees after drawing each side.  </abstract><doi>10.37236/8716</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2020-03, Vol.27 (1)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_8716
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Lozenge Tilings of Hexagons with Central Holes and Dents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A08%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lozenge%20Tilings%20of%20Hexagons%20with%20Central%20Holes%20and%20Dents&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Lai,%20Tri&rft.date=2020-03-20&rft.volume=27&rft.issue=1&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/8716&rft_dat=%3Ccrossref%3E10_37236_8716%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true