Lozenge Tilings of Hexagons with Central Holes and Dents

Ciucu proved a simple product formula for the tiling number of a hexagon in which a chain of equilateral triangles of alternating orientations, called a `fern', has been removed from the center (Adv. Math. 2017). In this paper, we present a multi-parameter generalization of this work by giving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2020-03, Vol.27 (1)
1. Verfasser: Lai, Tri
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ciucu proved a simple product formula for the tiling number of a hexagon in which a chain of equilateral triangles of alternating orientations, called a `fern', has been removed from the center (Adv. Math. 2017). In this paper, we present a multi-parameter generalization of this work by giving an explicit tiling enumeration for a hexagon with three ferns removed, besides the central fern as in Ciucu's region, we remove two new ferns from two sides of the hexagon. Our result also implies a new `dual' of MacMahon's classical formula of boxed plane partitions, corresponding to the exterior of the union of three disjoint concave polygons obtained by turning 120 degrees after drawing each side.  
ISSN:1077-8926
1077-8926
DOI:10.37236/8716