On Essentially 4-Edge-Connected Cubic Bricks

Lovász (1987) proved that every matching covered graph $G$ may be uniquely decomposed into a list of bricks (nonbipartite) and braces (bipartite); we let $b(G)$ denote the number of bricks. An edge $e$ is removable if $G-e$ is also matching covered; furthermore, $e$ is $b$-invariant if $b(G-e)=1$, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2020-01, Vol.27 (1)
Hauptverfasser: Kothari, Nishad, De Carvalho, Marcelo H., Lucchesi, Cláudio L., Little, Charles H. C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lovász (1987) proved that every matching covered graph $G$ may be uniquely decomposed into a list of bricks (nonbipartite) and braces (bipartite); we let $b(G)$ denote the number of bricks. An edge $e$ is removable if $G-e$ is also matching covered; furthermore, $e$ is $b$-invariant if $b(G-e)=1$, and $e$ is quasi-$b$-invariant if $b(G-e)=2$. (Each edge of the Petersen graph is quasi-$b$-invariant.) A brick $G$ is near-bipartite if it has a pair of edges $\{e,f\}$ so that $G-e-f$ is matching covered and bipartite; such a pair $\{e,f\}$ is a removable doubleton. (Each of $K_4$ and the triangular prism $\overline{C_6}$ has three removable doubletons.) Carvalho, Lucchesi and Murty (2002) proved a conjecture of Lovász which states that every brick, distinct from $K_4$, $\overline{C_6}$ and the Petersen graph, has a $b$-invariant edge. A cubic graph is essentially $4$-edge-connected if it is $2$-edge-connected and if its only $3$-cuts are the trivial ones; it is well-known that each such graph is either a brick or a brace; we provide a graph-theoretical proof of this fact. We prove that if $G$ is any essentially $4$-edge-connected cubic brick then its edge-set may be partitioned into three (possibly empty) sets: (i) edges that participate in a removable doubleton, (ii) $b$-invariant edges, and (iii) quasi-$b$-invariant edges; our Main Theorem states that if $G$ has two adjacent quasi-$b$-invariant edges, say $e_1$ and $e_2$, then either $G$ is the Petersen graph or the (near-bipartite) Cubeplex graph, or otherwise, each edge of $G$ (distinct from $e_1$ and $e_2$) is $b$-invariant. As a corollary, we deduce that each essentially $4$-edge-connected cubic non-near-bipartite brick $G$, distinct from the Petersen graph, has at least $|V(G)|$ $b$-invariant edges.
ISSN:1077-8926
1077-8926
DOI:10.37236/8594