Extremal $H$-Free Planar Graphs

Given a graph $H$, a graph is $H$-free if it does not contain $H$ as a subgraph. We continue to study the topic of "extremal" planar graphs initiated by Dowden [J. Graph Theory  83 (2016) 213–230], that is, how many edges can an $H$-free planar graph on $n$ vertices have? We define $ex_{_\...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2019-05, Vol.26 (2)
Hauptverfasser: Lan, Yongxin, Shi, Yongtang, Song, Zi-Xia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a graph $H$, a graph is $H$-free if it does not contain $H$ as a subgraph. We continue to study the topic of "extremal" planar graphs initiated by Dowden [J. Graph Theory  83 (2016) 213–230], that is, how many edges can an $H$-free planar graph on $n$ vertices have? We define $ex_{_\mathcal{P}}(n,H)$ to be the maximum number of edges in an $H$-free planar graph on $n $ vertices. We first obtain several sufficient conditions on $H$ which yield  $ex_{_\mathcal{P}}(n,H)=3n-6$ for all $n\ge |V(H)|$. We discover that the chromatic number of $H$ does not play a role, as in the celebrated Erdős-Stone Theorem.  We then completely determine $ex_{_\mathcal{P}}(n,H)$ when $H$ is a wheel or a star. Finally, we examine the case when $H$ is a $(t, r)$-fan, that is, $H$ is isomorphic to  $K_1+tK_{r-1}$, where $t\ge2$ and $r\ge 3$ are integers. However, determining $ex_{_\mathcal{P}}(n,H)$, when $H$ is a planar subcubic graph, remains wide open.
ISSN:1077-8926
1077-8926
DOI:10.37236/8255