Products of Factorial Schur Functions

The product of any finite number of factorial Schur functions can be expanded as a ${\Bbb Z}[{\bf y}]$-linear combination of Schur functions. We give a rule for computing the coefficients in such an expansion. This rule generalizes the classical Littlewood-Richardson rule and several special cases o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2008-06, Vol.15 (1)
1. Verfasser: Kreiman, Victor
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The product of any finite number of factorial Schur functions can be expanded as a ${\Bbb Z}[{\bf y}]$-linear combination of Schur functions. We give a rule for computing the coefficients in such an expansion. This rule generalizes the classical Littlewood-Richardson rule and several special cases of the Molev-Sagan rule.
ISSN:1077-8926
1077-8926
DOI:10.37236/808