Products of Factorial Schur Functions
The product of any finite number of factorial Schur functions can be expanded as a ${\Bbb Z}[{\bf y}]$-linear combination of Schur functions. We give a rule for computing the coefficients in such an expansion. This rule generalizes the classical Littlewood-Richardson rule and several special cases o...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2008-06, Vol.15 (1) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The product of any finite number of factorial Schur functions can be expanded as a ${\Bbb Z}[{\bf y}]$-linear combination of Schur functions. We give a rule for computing the coefficients in such an expansion. This rule generalizes the classical Littlewood-Richardson rule and several special cases of the Molev-Sagan rule. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/808 |