Tamari Lattices for Parabolic Quotients of the Symmetric Group

We generalize the Tamari lattice by extending the notions of $231$-avoiding permutations, noncrossing set partitions, and nonnesting set partitions to parabolic quotients of the symmetric group $\mathfrak{S}_{n}$.  We show bijectively that these three objects are equinumerous.  We show how to extend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2019-11, Vol.26 (4)
Hauptverfasser: Mühle, Henri, Williams, Nathan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize the Tamari lattice by extending the notions of $231$-avoiding permutations, noncrossing set partitions, and nonnesting set partitions to parabolic quotients of the symmetric group $\mathfrak{S}_{n}$.  We show bijectively that these three objects are equinumerous.  We show how to extend these constructions to parabolic quotients of any finite Coxeter group.  The main ingredient is a certain aligned condition of inversion sets; a concept which can in fact be generalized to any reduced expression of any element in any (not necessarily finite) Coxeter group.
ISSN:1077-8926
1077-8926
DOI:10.37236/7844