Tamari Lattices for Parabolic Quotients of the Symmetric Group
We generalize the Tamari lattice by extending the notions of $231$-avoiding permutations, noncrossing set partitions, and nonnesting set partitions to parabolic quotients of the symmetric group $\mathfrak{S}_{n}$. We show bijectively that these three objects are equinumerous. We show how to extend...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2019-11, Vol.26 (4) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize the Tamari lattice by extending the notions of $231$-avoiding permutations, noncrossing set partitions, and nonnesting set partitions to parabolic quotients of the symmetric group $\mathfrak{S}_{n}$. We show bijectively that these three objects are equinumerous. We show how to extend these constructions to parabolic quotients of any finite Coxeter group. The main ingredient is a certain aligned condition of inversion sets; a concept which can in fact be generalized to any reduced expression of any element in any (not necessarily finite) Coxeter group. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/7844 |