Eulerian Numbers Associated with Arithmetical Progressions
In this paper, we give a combinatorial interpretation of the $r$-Whitney-Eulerian numbers by means of coloured signed permutations. This sequence is a generalization of the well-known Eulerian numbers and it is connected to $r$-Whitney numbers of the second kind. Using generating functions, we provi...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2018-03, Vol.25 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we give a combinatorial interpretation of the $r$-Whitney-Eulerian numbers by means of coloured signed permutations. This sequence is a generalization of the well-known Eulerian numbers and it is connected to $r$-Whitney numbers of the second kind. Using generating functions, we provide some combinatorial identities and the log-concavity property. Finally, we show some basic congruences involving the $r$-Whitney-Eulerian numbers. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/7182 |