Perfect Matching Covers of Cubic Graphs of Oddness 2
A perfect matching cover of a graph $G$ is a set of perfect matchings of $G$ such that each edge of $G$ is contained in at least one member of it. Berge conjectured that every bridgeless cubic graph has a perfect matching cover of order at most 5. The Berge Conjecture is largely open and it is even...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2019-03, Vol.26 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A perfect matching cover of a graph $G$ is a set of perfect matchings of $G$ such that each edge of $G$ is contained in at least one member of it. Berge conjectured that every bridgeless cubic graph has a perfect matching cover of order at most 5. The Berge Conjecture is largely open and it is even unknown whether a constant integer $c$ does exist such that every bridgeless cubic graph has a perfect matching cover of order at most $c$. In this paper, we show that a bridgeless cubic graph $G$ has a perfect matching cover of order at most 11 if $G$ has a 2-factor in which the number of odd circuits is 2. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/7175 |