Perfect Matching Covers of Cubic Graphs of Oddness 2

A perfect matching cover of a graph $G$ is a set of perfect matchings of $G$ such that each edge of $G$ is contained in at least one member of it. Berge conjectured that every bridgeless cubic graph has a perfect matching cover of order at most 5. The Berge Conjecture is largely open and it is even...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2019-03, Vol.26 (1)
Hauptverfasser: Sun, Wuyang, Wang, Fan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A perfect matching cover of a graph $G$ is a set of perfect matchings of $G$ such that each edge of $G$ is contained in at least one member of it. Berge conjectured that every bridgeless cubic graph has a perfect matching cover of order at most 5. The Berge Conjecture is largely open and it is even unknown whether a constant integer $c$ does exist such that every bridgeless cubic graph has a perfect matching cover of order at most $c$. In this paper, we show that a bridgeless cubic graph $G$ has a perfect matching cover of order at most 11 if $G$ has a 2-factor in which the number of odd circuits is 2.
ISSN:1077-8926
1077-8926
DOI:10.37236/7175