The Spectral Gap of Graphs Arising From Substring Reversals
The substring reversal graph $R_n$ is the graph whose vertices are the permutations $S_n$, and where two permutations are adjacent if one is obtained from a substring reversal of the other. We determine the spectral gap of $R_n$, and show that its spectrum contains many integer values. Further we co...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2017-07, Vol.24 (3) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The substring reversal graph $R_n$ is the graph whose vertices are the permutations $S_n$, and where two permutations are adjacent if one is obtained from a substring reversal of the other. We determine the spectral gap of $R_n$, and show that its spectrum contains many integer values. Further we consider a family of graphs that generalize the prefix reversal (or pancake flipping) graph, and show that every graph in this family has adjacency spectral gap equal to one. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/6894 |