The Spectral Gap of Graphs Arising From Substring Reversals

The substring reversal graph $R_n$ is the graph whose vertices are the permutations $S_n$, and where two permutations are adjacent if one is obtained from a substring reversal of the other. We determine the spectral gap of $R_n$, and show that its spectrum contains many integer values. Further we co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2017-07, Vol.24 (3)
Hauptverfasser: Chung, Fan, Tobin, Josh
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The substring reversal graph $R_n$ is the graph whose vertices are the permutations $S_n$, and where two permutations are adjacent if one is obtained from a substring reversal of the other. We determine the spectral gap of $R_n$, and show that its spectrum contains many integer values. Further we consider a family of graphs that generalize the prefix reversal (or pancake flipping) graph, and show that every graph in this family has adjacency spectral gap equal to one.
ISSN:1077-8926
1077-8926
DOI:10.37236/6894