Isoperimetric Numbers of Regular Graphs of High Degree with Applications to Arithmetic Riemann Surfaces
We derive upper and lower bounds on the isoperimetric numbers and bisection widths of a large class of regular graphs of high degree. Our methods are combinatorial and do not require a knowledge of the eigenvalue spectrum. We apply these bounds to random regular graphs of high degree and the Platoni...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2011-08, Vol.18 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive upper and lower bounds on the isoperimetric numbers and bisection widths of a large class of regular graphs of high degree. Our methods are combinatorial and do not require a knowledge of the eigenvalue spectrum. We apply these bounds to random regular graphs of high degree and the Platonic graphs over the rings $\mathbb{Z}_n$. In the latter case we show that these graphs are generally non-Ramanujan for composite $n$ and we also give sharp asymptotic bounds for the isoperimetric numbers. We conclude by giving bounds on the Cheeger constants of arithmetic Riemann surfaces. For a large class of these surfaces these bounds are an improvement over the known asymptotic bounds. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/651 |