A Step Towards Yuzvinsky's Conjecture
An intercalate matrix $M$ of type $[r,s,n]$ is an $r\times s$ matrix with entries in $\{1,2,\dotsc,n\}$ such that all entries in each row are distinct, all entries in each column are distinct, and all $2 \times 2$ submatrices of $M$ have either $2$ or $4$ distinct entries. Yuzvinsky's Conjectur...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2017-11, Vol.24 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An intercalate matrix $M$ of type $[r,s,n]$ is an $r\times s$ matrix with entries in $\{1,2,\dotsc,n\}$ such that all entries in each row are distinct, all entries in each column are distinct, and all $2 \times 2$ submatrices of $M$ have either $2$ or $4$ distinct entries. Yuzvinsky's Conjecture on intercalate matrices claims that the smallest $n$ for which there is an intercalate matrix of type $[r,s,n]$ is the Hopf-Stiefel function $r \circ s$. In this paper we prove that Yuzvinsky's Conjecture is asimptotically true for $\frac{5}{6}$ of integer pairs $(r,s)$. We prove the Conjecture for $r\le 8$, and we study it in the range $r,s\le 32$. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/6322 |