Anagram-Free Graph Colouring
An anagram is a word of the form $WP$ where $W$ is a non-empty word and $P$ is a permutation of $W$. We study anagram-free graph colouring and give bounds on the chromatic number. Alon et al.[Random Structures & Algorithms 2002] asked whether anagram-free chromatic number is bounded by a functio...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2018-05, Vol.25 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An anagram is a word of the form $WP$ where $W$ is a non-empty word and $P$ is a permutation of $W$. We study anagram-free graph colouring and give bounds on the chromatic number. Alon et al.[Random Structures & Algorithms 2002] asked whether anagram-free chromatic number is bounded by a function of the maximum degree. We answer this question in the negative by constructing graphs with maximum degree 3 and unbounded anagram-free chromatic number. We also prove upper and lower bounds on the anagram-free chromatic number of trees in terms of their radius and pathwidth. Finally, we explore extensions to edge colouring and $k$-anagram-free colouring. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/6267 |