Rigged Configurations for all Symmetrizable Types

In an earlier work, the authors developed a rigged configuration model for the crystal $B(\infty)$ (which also descends to a model for irreducible highest weight crystals via a cutting procedure). However, the result obtained was only valid in finite types, affine types, and simply-laced indefinite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2017-02, Vol.24 (1)
Hauptverfasser: Salisbury, Ben, Scrimshaw, Travis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In an earlier work, the authors developed a rigged configuration model for the crystal $B(\infty)$ (which also descends to a model for irreducible highest weight crystals via a cutting procedure). However, the result obtained was only valid in finite types, affine types, and simply-laced indefinite types. In this paper, we show that the rigged configuration model proposed does indeed hold for all symmetrizable types. As an application, we give an easy combinatorial condition that gives a Littlewood-Richardson rule using rigged configurations which is valid in all symmetrizable Kac-Moody types.
ISSN:1077-8926
1077-8926
DOI:10.37236/6028