On Universal Hypergraphs

A hypergraph $H$ is called universal for a family $\mathcal{F}$ of hypergraphs, if it contains every hypergraph $F \in \mathcal{F}$ as a copy. For the family of $r$-uniform hypergraphs with maximum vertex degree bounded by $\Delta$ and at most $n$ vertices any universal hypergraph has to contain $\O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2016-11, Vol.23 (4)
Hauptverfasser: Hetterich, Samuel, Parczyk, Olaf, Person, Yury
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A hypergraph $H$ is called universal for a family $\mathcal{F}$ of hypergraphs, if it contains every hypergraph $F \in \mathcal{F}$ as a copy. For the family of $r$-uniform hypergraphs with maximum vertex degree bounded by $\Delta$ and at most $n$ vertices any universal hypergraph has to contain $\Omega(n^{r-r/\Delta})$ many edges. We exploit constructions of Alon and Capalbo to obtain universal $r$-uniform hypergraphs with the optimal number of edges $O(n^{r-r/\Delta})$ when $r$ is even, $r \mid \Delta$ or $\Delta=2$. Further we generalize the result of Alon and Asodi about optimal universal graphs for the family of graphs with at most $m$ edges and no isolated vertices to hypergraphs.
ISSN:1077-8926
1077-8926
DOI:10.37236/5562