A Conjecture of Norine and Thomas for Abelian Cayley Graphs

A graph $\Gamma_1$ is a matching minor of $\Gamma$ if some even subdivision of $\Gamma_1$ is isomorphic to a subgraph $\Gamma_2$ of $\Gamma$, and by deleting the vertices of $\Gamma_2$ from $\Gamma$ the left subgraph has a perfect matching. Motivated by the study of Pfaffian graphs (the numbers of p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2017-09, Vol.24 (3)
Hauptverfasser: Lu, Fuliang, Zhang, Lianzhu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A graph $\Gamma_1$ is a matching minor of $\Gamma$ if some even subdivision of $\Gamma_1$ is isomorphic to a subgraph $\Gamma_2$ of $\Gamma$, and by deleting the vertices of $\Gamma_2$ from $\Gamma$ the left subgraph has a perfect matching. Motivated by the study of Pfaffian graphs (the numbers of perfect matchings of these graphs can be computed in polynomial time), we characterized Abelian Cayley graphs which do not contain a $K_{3,3}$ matching minor. Furthermore, the Pfaffian property of Cayley graphs on Abelian groups is completely characterized. This result confirms that the conjecture posed by Norine and Thomas in 2008 for Abelian Cayley graphs is true.
ISSN:1077-8926
1077-8926
DOI:10.37236/5456