The Maximal Order of Hyper-($b$-ary)-expansions
Using methods developed by Coons and Tyler, we give a new proof of a recent result of Defant, by determining the maximal order of the number of hyper-($b$-ary)-expansions of a nonnegative integer $n$ for general integral bases $b\geqslant 2$.
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2017-02, Vol.24 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using methods developed by Coons and Tyler, we give a new proof of a recent result of Defant, by determining the maximal order of the number of hyper-($b$-ary)-expansions of a nonnegative integer $n$ for general integral bases $b\geqslant 2$. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/5441 |