Enumeration of Lozenge Tilings of Halved Hexagons with a Boundary Defect
We generalize a special case of a theorem of Proctor on the enumeration of lozenge tilings of a hexagon with a maximal staircase removed using Kuo’s graphical condensation method. Additionally, we prove a formula for a weighted version of the given region. The result also extends work of Ciucu and F...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2015-10, Vol.22 (4) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | The Electronic journal of combinatorics |
container_volume | 22 |
creator | Rohatgi, Ranjan |
description | We generalize a special case of a theorem of Proctor on the enumeration of lozenge tilings of a hexagon with a maximal staircase removed using Kuo’s graphical condensation method. Additionally, we prove a formula for a weighted version of the given region. The result also extends work of Ciucu and Fischer. By applying the factorization theorem of Ciucu, we are also able to generalize a special case of MacMahon’s boxed plane partition formula. |
doi_str_mv | 10.37236/5199 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_5199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_5199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-b634a3f0a0e4043aadea18d9876373347a10bf7400e5cf110515179ee00f66963</originalsourceid><addsrcrecordid>eNpNj01PwzAQRC0EEqX0P_jCMbAbJ3Z8hFIapEhcyjnaJusQlNooTvn69VDgwGlGc3iaJ8QC4VKZVOmrHK09EjMEY5LCpvr4Xz8VZzE-A2BqbT4T5crvdzzS1Acvg5NV-GTfsdz0Q--7eJhKGl65lSW_Uxd8lG_99CRJ3oS9b2n8kLfsuJnOxYmjIfLiL-fi8W61WZZJ9bC-X15XSZOmOCVbrTJSDgg4g0wRtUxYtLYwWhmlMkMIW2cyAM4bhwg55mgsM4DT2mo1Fxe_3GYMMY7s6pex333_qBHqH_36oK--AFeTStQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enumeration of Lozenge Tilings of Halved Hexagons with a Boundary Defect</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Rohatgi, Ranjan</creator><creatorcontrib>Rohatgi, Ranjan</creatorcontrib><description>We generalize a special case of a theorem of Proctor on the enumeration of lozenge tilings of a hexagon with a maximal staircase removed using Kuo’s graphical condensation method. Additionally, we prove a formula for a weighted version of the given region. The result also extends work of Ciucu and Fischer. By applying the factorization theorem of Ciucu, we are also able to generalize a special case of MacMahon’s boxed plane partition formula. </description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/5199</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2015-10, Vol.22 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-b634a3f0a0e4043aadea18d9876373347a10bf7400e5cf110515179ee00f66963</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Rohatgi, Ranjan</creatorcontrib><title>Enumeration of Lozenge Tilings of Halved Hexagons with a Boundary Defect</title><title>The Electronic journal of combinatorics</title><description>We generalize a special case of a theorem of Proctor on the enumeration of lozenge tilings of a hexagon with a maximal staircase removed using Kuo’s graphical condensation method. Additionally, we prove a formula for a weighted version of the given region. The result also extends work of Ciucu and Fischer. By applying the factorization theorem of Ciucu, we are also able to generalize a special case of MacMahon’s boxed plane partition formula. </description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNj01PwzAQRC0EEqX0P_jCMbAbJ3Z8hFIapEhcyjnaJusQlNooTvn69VDgwGlGc3iaJ8QC4VKZVOmrHK09EjMEY5LCpvr4Xz8VZzE-A2BqbT4T5crvdzzS1Acvg5NV-GTfsdz0Q--7eJhKGl65lSW_Uxd8lG_99CRJ3oS9b2n8kLfsuJnOxYmjIfLiL-fi8W61WZZJ9bC-X15XSZOmOCVbrTJSDgg4g0wRtUxYtLYwWhmlMkMIW2cyAM4bhwg55mgsM4DT2mo1Fxe_3GYMMY7s6pex333_qBHqH_36oK--AFeTStQ</recordid><startdate>20151030</startdate><enddate>20151030</enddate><creator>Rohatgi, Ranjan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151030</creationdate><title>Enumeration of Lozenge Tilings of Halved Hexagons with a Boundary Defect</title><author>Rohatgi, Ranjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-b634a3f0a0e4043aadea18d9876373347a10bf7400e5cf110515179ee00f66963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rohatgi, Ranjan</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rohatgi, Ranjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enumeration of Lozenge Tilings of Halved Hexagons with a Boundary Defect</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2015-10-30</date><risdate>2015</risdate><volume>22</volume><issue>4</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>We generalize a special case of a theorem of Proctor on the enumeration of lozenge tilings of a hexagon with a maximal staircase removed using Kuo’s graphical condensation method. Additionally, we prove a formula for a weighted version of the given region. The result also extends work of Ciucu and Fischer. By applying the factorization theorem of Ciucu, we are also able to generalize a special case of MacMahon’s boxed plane partition formula. </abstract><doi>10.37236/5199</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-8926 |
ispartof | The Electronic journal of combinatorics, 2015-10, Vol.22 (4) |
issn | 1077-8926 1077-8926 |
language | eng |
recordid | cdi_crossref_primary_10_37236_5199 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
title | Enumeration of Lozenge Tilings of Halved Hexagons with a Boundary Defect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T16%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enumeration%20of%20Lozenge%20Tilings%20of%20Halved%20Hexagons%20with%20a%20Boundary%20Defect&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Rohatgi,%20Ranjan&rft.date=2015-10-30&rft.volume=22&rft.issue=4&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/5199&rft_dat=%3Ccrossref%3E10_37236_5199%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |