Enumeration of Lozenge Tilings of Halved Hexagons with a Boundary Defect

We generalize a special case of a theorem of Proctor on the enumeration of lozenge tilings of a hexagon with a maximal staircase removed using Kuo’s graphical condensation method. Additionally, we prove a formula for a weighted version of the given region. The result also extends work of Ciucu and F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2015-10, Vol.22 (4)
1. Verfasser: Rohatgi, Ranjan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize a special case of a theorem of Proctor on the enumeration of lozenge tilings of a hexagon with a maximal staircase removed using Kuo’s graphical condensation method. Additionally, we prove a formula for a weighted version of the given region. The result also extends work of Ciucu and Fischer. By applying the factorization theorem of Ciucu, we are also able to generalize a special case of MacMahon’s boxed plane partition formula. 
ISSN:1077-8926
1077-8926
DOI:10.37236/5199