Enumeration of Lozenge Tilings of Halved Hexagons with a Boundary Defect
We generalize a special case of a theorem of Proctor on the enumeration of lozenge tilings of a hexagon with a maximal staircase removed using Kuo’s graphical condensation method. Additionally, we prove a formula for a weighted version of the given region. The result also extends work of Ciucu and F...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2015-10, Vol.22 (4) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize a special case of a theorem of Proctor on the enumeration of lozenge tilings of a hexagon with a maximal staircase removed using Kuo’s graphical condensation method. Additionally, we prove a formula for a weighted version of the given region. The result also extends work of Ciucu and Fischer. By applying the factorization theorem of Ciucu, we are also able to generalize a special case of MacMahon’s boxed plane partition formula. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/5199 |