The Number of Positions Starting a Square in Binary Words

We consider the number $\sigma(w)$ of positions that do not start a square in binary words $w$. Letting $\sigma(n)$ denote the maximum of $\sigma(w)$ for length $|w|=n$, we show that $\lim \sigma(n)/n = 15/31$.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2011-01, Vol.18 (1)
Hauptverfasser: Harju, Tero, Kärki, Tomi, Nowotka, Dirk
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Electronic journal of combinatorics
container_volume 18
creator Harju, Tero
Kärki, Tomi
Nowotka, Dirk
description We consider the number $\sigma(w)$ of positions that do not start a square in binary words $w$. Letting $\sigma(n)$ denote the maximum of $\sigma(w)$ for length $|w|=n$, we show that $\lim \sigma(n)/n = 15/31$.
doi_str_mv 10.37236/493
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-41002281a5d9a7a3b17b5647dc1f2fe0cbf946ad2dcaa1df9796a6b8a8cf117f3</originalsourceid><addsrcrecordid>eNpNj71OwzAURi0EEqXlHTywBnztxM4doQKKVLVILWKMbvwDRjQGOx14eypgYDrfdPQdxmYgLpWRSl_VqI7YBIQxVYtSH__bp-yslDchQCI2E4bbV89X-13vM0-BP6YSx5iGwjcj5TEOL5z45nNP2fM48Js4UP7izym7MmMngd6LP__jlD3d3W7ni2q5vn-YXy8rKwHHqgYhpGyBGodkSPVg-kbXxlkIMnhh-4C1JiedJQIX0KAm3bfU2gBggpqyi1-vzamU7EP3kePucKMD0f3kdodc9Q3lVUY5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Number of Positions Starting a Square in Binary Words</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Harju, Tero ; Kärki, Tomi ; Nowotka, Dirk</creator><creatorcontrib>Harju, Tero ; Kärki, Tomi ; Nowotka, Dirk</creatorcontrib><description>We consider the number $\sigma(w)$ of positions that do not start a square in binary words $w$. Letting $\sigma(n)$ denote the maximum of $\sigma(w)$ for length $|w|=n$, we show that $\lim \sigma(n)/n = 15/31$.</description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/493</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2011-01, Vol.18 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c219t-41002281a5d9a7a3b17b5647dc1f2fe0cbf946ad2dcaa1df9796a6b8a8cf117f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Harju, Tero</creatorcontrib><creatorcontrib>Kärki, Tomi</creatorcontrib><creatorcontrib>Nowotka, Dirk</creatorcontrib><title>The Number of Positions Starting a Square in Binary Words</title><title>The Electronic journal of combinatorics</title><description>We consider the number $\sigma(w)$ of positions that do not start a square in binary words $w$. Letting $\sigma(n)$ denote the maximum of $\sigma(w)$ for length $|w|=n$, we show that $\lim \sigma(n)/n = 15/31$.</description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpNj71OwzAURi0EEqXlHTywBnztxM4doQKKVLVILWKMbvwDRjQGOx14eypgYDrfdPQdxmYgLpWRSl_VqI7YBIQxVYtSH__bp-yslDchQCI2E4bbV89X-13vM0-BP6YSx5iGwjcj5TEOL5z45nNP2fM48Js4UP7izym7MmMngd6LP__jlD3d3W7ni2q5vn-YXy8rKwHHqgYhpGyBGodkSPVg-kbXxlkIMnhh-4C1JiedJQIX0KAm3bfU2gBggpqyi1-vzamU7EP3kePucKMD0f3kdodc9Q3lVUY5</recordid><startdate>20110105</startdate><enddate>20110105</enddate><creator>Harju, Tero</creator><creator>Kärki, Tomi</creator><creator>Nowotka, Dirk</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110105</creationdate><title>The Number of Positions Starting a Square in Binary Words</title><author>Harju, Tero ; Kärki, Tomi ; Nowotka, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-41002281a5d9a7a3b17b5647dc1f2fe0cbf946ad2dcaa1df9796a6b8a8cf117f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harju, Tero</creatorcontrib><creatorcontrib>Kärki, Tomi</creatorcontrib><creatorcontrib>Nowotka, Dirk</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harju, Tero</au><au>Kärki, Tomi</au><au>Nowotka, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Number of Positions Starting a Square in Binary Words</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2011-01-05</date><risdate>2011</risdate><volume>18</volume><issue>1</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>We consider the number $\sigma(w)$ of positions that do not start a square in binary words $w$. Letting $\sigma(n)$ denote the maximum of $\sigma(w)$ for length $|w|=n$, we show that $\lim \sigma(n)/n = 15/31$.</abstract><doi>10.37236/493</doi></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2011-01, Vol.18 (1)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_493
source EZB-FREE-00999 freely available EZB journals
title The Number of Positions Starting a Square in Binary Words
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A21%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Number%20of%20Positions%20Starting%20a%20Square%20in%20Binary%20Words&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Harju,%20Tero&rft.date=2011-01-05&rft.volume=18&rft.issue=1&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/493&rft_dat=%3Ccrossref%3E10_37236_493%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true