On $m$-Closed Graphs

A graph is closed when its vertices have a labeling by $[n]$ such that the binomial edge ideal $J_G$ has a quadratic Gröbner basis with respect to the lexicographic order induced by $x_1 > \ldots > x_n > y_1> \ldots > y_n$. In this paper, we generalize this notion and study the so cal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2014-11, Vol.21 (4)
Hauptverfasser: Sharifan, Leila, Javanbakht, Masoumeh
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A graph is closed when its vertices have a labeling by $[n]$ such that the binomial edge ideal $J_G$ has a quadratic Gröbner basis with respect to the lexicographic order induced by $x_1 > \ldots > x_n > y_1> \ldots > y_n$. In this paper, we generalize this notion and study the so called $m$-closed graphs. We find equivalent condition to $3$-closed property of an arbitrary tree $T$. Using it, we classify a class of $3$-closed trees. The primary decomposition of this class of graphs is also studied.
ISSN:1077-8926
1077-8926
DOI:10.37236/4406