Equicovering Subgraphs of Graphs and Hypergraphs
As a variation on the $t$-Equal Union Property ($t$-EUP) introduced by Lindström, we introduce the $t$-Equal Valence Property ($t$-EVP) for hypergraphs: a hypergraph satisfies the $t$-EVP if there are $t$ pairwise edge-disjoint subhypergraphs such that for each vertex $v$, the degree of $v$ in all...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2014-03, Vol.21 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As a variation on the $t$-Equal Union Property ($t$-EUP) introduced by Lindström, we introduce the $t$-Equal Valence Property ($t$-EVP) for hypergraphs: a hypergraph satisfies the $t$-EVP if there are $t$ pairwise edge-disjoint subhypergraphs such that for each vertex $v$, the degree of $v$ in all $t$ subhypergraphs is the same. In the $t$-EUP, the subhypergraphs just have the same sets of vertices with positive degree. For both the $2$-EUP and the $2$-EVP, we characterize the graphs satisfying the property and determine the maximum number of edges in a graph not satisfying it. We also study the maximum number of edges in both $k$-uniform and general hypergraphs not satisfying the $t$-EVP. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/3999 |