Equicovering Subgraphs of Graphs and Hypergraphs

 As a variation on the $t$-Equal Union Property ($t$-EUP) introduced by Lindström, we introduce the $t$-Equal Valence Property ($t$-EVP) for hypergraphs: a hypergraph satisfies the $t$-EVP if there are $t$ pairwise edge-disjoint subhypergraphs such that for each vertex $v$, the degree of $v$ in all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2014-03, Vol.21 (1)
Hauptverfasser: Choi, Ilkyoo, Kim, Jaehoon, Tebbe, Amelia, West, Douglas B.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung: As a variation on the $t$-Equal Union Property ($t$-EUP) introduced by Lindström, we introduce the $t$-Equal Valence Property ($t$-EVP) for hypergraphs: a hypergraph satisfies the $t$-EVP if there are $t$ pairwise edge-disjoint subhypergraphs such that for each vertex $v$, the degree of $v$ in all $t$ subhypergraphs is the same.  In the $t$-EUP, the subhypergraphs just have the same sets of vertices with positive degree.  For both the $2$-EUP and the $2$-EVP, we characterize the graphs satisfying the property and determine the maximum number of edges in a graph not satisfying it.  We also study the maximum number of edges in both $k$-uniform and general hypergraphs not satisfying the $t$-EVP.
ISSN:1077-8926
1077-8926
DOI:10.37236/3999