Homomesy in Products of Two Chains

Many invertible actions $\tau$ on a set $\mathcal{S}$ of combinatorial objects, along with a natural statistic $f$ on $\mathcal{S}$, exhibit the following property which we dub homomesy: the average of $f$ over each $\tau$-orbit in $\mathcal{S}$ is the same as the average of $f$ over the whole set $...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2015-07, Vol.22 (3)
Hauptverfasser: Propp, James, Roby, Tom
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title The Electronic journal of combinatorics
container_volume 22
creator Propp, James
Roby, Tom
description Many invertible actions $\tau$ on a set $\mathcal{S}$ of combinatorial objects, along with a natural statistic $f$ on $\mathcal{S}$, exhibit the following property which we dub homomesy: the average of $f$ over each $\tau$-orbit in $\mathcal{S}$ is the same as the average of $f$ over the whole set $\mathcal{S}$. This phenomenon was first noticed by Panyushev in 2007 in the context of the rowmotion action on the set of antichains of a root poset; Armstrong, Stump, and Thomas proved Panyushev's conjecture in 2011. We describe a theoretical framework for results of this kind  that applies more broadly, giving examples in a variety of contexts. These include linear actions on vector spaces, sandpile dynamics, Suter's action on certain subposets of Young's Lattice, Lyness 5-cycles, promotion of rectangular semi-standard Young tableaux, and the rowmotion and promotion actions on certain posets. We give a detailed description of the latter situation for products of two chains.  
doi_str_mv 10.37236/3579
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_37236_3579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_37236_3579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-de3684fa21a97e71feb95bbb30a32491c5435f9729a05f5706b4c4d01900e7ee3</originalsourceid><addsrcrecordid>eNpNj01LAzEUAINYsLb9D0HwuPpeXrLpO8qiVijooZ6XJJvgittIUpH-e_Hj4GnmNDBCrBCuyCpqr8lYPhFzBGubNav29J-fifNaXwFQMZu5uNjkKU-xHuW4l08lDx_hUGVOcveZZffixn1dillybzWu_rgQz3e3u27TbB_vH7qbbROUwkMzRGrXOjmFjm20mKJn470ncKQ0YzCaTGKr2IFJxkLrddADIANEGyMtxOVvN5Rca4mpfy_j5MqxR-h_xvrvMfoCRR09eA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Homomesy in Products of Two Chains</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Propp, James ; Roby, Tom</creator><creatorcontrib>Propp, James ; Roby, Tom</creatorcontrib><description>Many invertible actions $\tau$ on a set $\mathcal{S}$ of combinatorial objects, along with a natural statistic $f$ on $\mathcal{S}$, exhibit the following property which we dub homomesy: the average of $f$ over each $\tau$-orbit in $\mathcal{S}$ is the same as the average of $f$ over the whole set $\mathcal{S}$. This phenomenon was first noticed by Panyushev in 2007 in the context of the rowmotion action on the set of antichains of a root poset; Armstrong, Stump, and Thomas proved Panyushev's conjecture in 2011. We describe a theoretical framework for results of this kind  that applies more broadly, giving examples in a variety of contexts. These include linear actions on vector spaces, sandpile dynamics, Suter's action on certain subposets of Young's Lattice, Lyness 5-cycles, promotion of rectangular semi-standard Young tableaux, and the rowmotion and promotion actions on certain posets. We give a detailed description of the latter situation for products of two chains.  </description><identifier>ISSN: 1077-8926</identifier><identifier>EISSN: 1077-8926</identifier><identifier>DOI: 10.37236/3579</identifier><language>eng</language><ispartof>The Electronic journal of combinatorics, 2015-07, Vol.22 (3)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-de3684fa21a97e71feb95bbb30a32491c5435f9729a05f5706b4c4d01900e7ee3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Propp, James</creatorcontrib><creatorcontrib>Roby, Tom</creatorcontrib><title>Homomesy in Products of Two Chains</title><title>The Electronic journal of combinatorics</title><description>Many invertible actions $\tau$ on a set $\mathcal{S}$ of combinatorial objects, along with a natural statistic $f$ on $\mathcal{S}$, exhibit the following property which we dub homomesy: the average of $f$ over each $\tau$-orbit in $\mathcal{S}$ is the same as the average of $f$ over the whole set $\mathcal{S}$. This phenomenon was first noticed by Panyushev in 2007 in the context of the rowmotion action on the set of antichains of a root poset; Armstrong, Stump, and Thomas proved Panyushev's conjecture in 2011. We describe a theoretical framework for results of this kind  that applies more broadly, giving examples in a variety of contexts. These include linear actions on vector spaces, sandpile dynamics, Suter's action on certain subposets of Young's Lattice, Lyness 5-cycles, promotion of rectangular semi-standard Young tableaux, and the rowmotion and promotion actions on certain posets. We give a detailed description of the latter situation for products of two chains.  </description><issn>1077-8926</issn><issn>1077-8926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNj01LAzEUAINYsLb9D0HwuPpeXrLpO8qiVijooZ6XJJvgittIUpH-e_Hj4GnmNDBCrBCuyCpqr8lYPhFzBGubNav29J-fifNaXwFQMZu5uNjkKU-xHuW4l08lDx_hUGVOcveZZffixn1dillybzWu_rgQz3e3u27TbB_vH7qbbROUwkMzRGrXOjmFjm20mKJn470ncKQ0YzCaTGKr2IFJxkLrddADIANEGyMtxOVvN5Rca4mpfy_j5MqxR-h_xvrvMfoCRR09eA</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Propp, James</creator><creator>Roby, Tom</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150701</creationdate><title>Homomesy in Products of Two Chains</title><author>Propp, James ; Roby, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-de3684fa21a97e71feb95bbb30a32491c5435f9729a05f5706b4c4d01900e7ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Propp, James</creatorcontrib><creatorcontrib>Roby, Tom</creatorcontrib><collection>CrossRef</collection><jtitle>The Electronic journal of combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Propp, James</au><au>Roby, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Homomesy in Products of Two Chains</atitle><jtitle>The Electronic journal of combinatorics</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>22</volume><issue>3</issue><issn>1077-8926</issn><eissn>1077-8926</eissn><abstract>Many invertible actions $\tau$ on a set $\mathcal{S}$ of combinatorial objects, along with a natural statistic $f$ on $\mathcal{S}$, exhibit the following property which we dub homomesy: the average of $f$ over each $\tau$-orbit in $\mathcal{S}$ is the same as the average of $f$ over the whole set $\mathcal{S}$. This phenomenon was first noticed by Panyushev in 2007 in the context of the rowmotion action on the set of antichains of a root poset; Armstrong, Stump, and Thomas proved Panyushev's conjecture in 2011. We describe a theoretical framework for results of this kind  that applies more broadly, giving examples in a variety of contexts. These include linear actions on vector spaces, sandpile dynamics, Suter's action on certain subposets of Young's Lattice, Lyness 5-cycles, promotion of rectangular semi-standard Young tableaux, and the rowmotion and promotion actions on certain posets. We give a detailed description of the latter situation for products of two chains.  </abstract><doi>10.37236/3579</doi></addata></record>
fulltext fulltext
identifier ISSN: 1077-8926
ispartof The Electronic journal of combinatorics, 2015-07, Vol.22 (3)
issn 1077-8926
1077-8926
language eng
recordid cdi_crossref_primary_10_37236_3579
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Homomesy in Products of Two Chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Homomesy%20in%20Products%20of%20Two%20Chains&rft.jtitle=The%20Electronic%20journal%20of%20combinatorics&rft.au=Propp,%20James&rft.date=2015-07-01&rft.volume=22&rft.issue=3&rft.issn=1077-8926&rft.eissn=1077-8926&rft_id=info:doi/10.37236/3579&rft_dat=%3Ccrossref%3E10_37236_3579%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true