Homomesy in Products of Two Chains
Many invertible actions $\tau$ on a set $\mathcal{S}$ of combinatorial objects, along with a natural statistic $f$ on $\mathcal{S}$, exhibit the following property which we dub homomesy: the average of $f$ over each $\tau$-orbit in $\mathcal{S}$ is the same as the average of $f$ over the whole set $...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2015-07, Vol.22 (3) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many invertible actions $\tau$ on a set $\mathcal{S}$ of combinatorial objects, along with a natural statistic $f$ on $\mathcal{S}$, exhibit the following property which we dub homomesy: the average of $f$ over each $\tau$-orbit in $\mathcal{S}$ is the same as the average of $f$ over the whole set $\mathcal{S}$. This phenomenon was first noticed by Panyushev in 2007 in the context of the rowmotion action on the set of antichains of a root poset; Armstrong, Stump, and Thomas proved Panyushev's conjecture in 2011. We describe a theoretical framework for results of this kind that applies more broadly, giving examples in a variety of contexts. These include linear actions on vector spaces, sandpile dynamics, Suter's action on certain subposets of Young's Lattice, Lyness 5-cycles, promotion of rectangular semi-standard Young tableaux, and the rowmotion and promotion actions on certain posets. We give a detailed description of the latter situation for products of two chains. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/3579 |