On the Number of Nonequivalent Propelinear Extended Perfect Codes

The paper proves that there exists an exponential number of nonequivalent propelinear extended perfect binary codes of length growing to infinity. Specifically, it is proved that all transitive extended perfect binary codes found by Potapov (2007) are propelinear. All such codes have small rank, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2013-05, Vol.20 (2)
Hauptverfasser: Borges, Joaquim, Mogilnykh, Ivan Yu, Rifà, Josep, Solov'eva, Faina I.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper proves that there exists an exponential number of nonequivalent propelinear extended perfect binary codes of length growing to infinity. Specifically, it is proved that all transitive extended perfect binary codes found by Potapov (2007) are propelinear. All such codes have small rank, which is one more than the rank of the extended Hamming code of the same length. We investigate the properties of these codes and show that any of them has a normalized propelinear representation.
ISSN:1077-8926
1077-8926
DOI:10.37236/3220