Facets of the Generalized Cluster Complex and Regions in the Extended Catalan Arrangement of Type $A
In this paper we present a bijection between two well known families of Catalan objects: the set of facets of the $m$-generalized cluster complex $\Delta^m(A_n)$ and that of dominant regions in the $m$-Catalan arrangement ${\rm Cat}^m(A_n)$, where $m\in\mathbb{N}_{>0}$. In particular, the map whi...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2013-10, Vol.20 (4) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we present a bijection between two well known families of Catalan objects: the set of facets of the $m$-generalized cluster complex $\Delta^m(A_n)$ and that of dominant regions in the $m$-Catalan arrangement ${\rm Cat}^m(A_n)$, where $m\in\mathbb{N}_{>0}$. In particular, the map which we define bijects facets containing the negative simple root $-\alpha$ to dominant regions having the hyperplane $\{v\in V\mid\left\langle v,\alpha \right\rangle=m\}$ as separating wall. As a result, it restricts to a bijection between the set of facets of the positive part of $\Delta^m(A_n)$ and the set of bounded dominant regions in ${\rm Cat}^m(A_n)$. Our map is a composition of two bijections in which integer partitions in an $m$-dilated $n$-staircase shape come into play. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/3169 |