On the Topology of the Cambrian Semilattices

For an arbitrary Coxeter group $W$, Reading and Speyer defined Cambrian semilattices $\mathcal{C}_{\gamma}$ as sub-semilattices of the weak order on $W$ induced by so-called $\gamma$-sortable elements. In this article, we define an edge-labeling of $\mathcal{C}_{\gamma}$, and show that this is an EL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Electronic journal of combinatorics 2013-06, Vol.20 (2)
Hauptverfasser: Kallipoliti, Myrto, Mühle, Henri
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For an arbitrary Coxeter group $W$, Reading and Speyer defined Cambrian semilattices $\mathcal{C}_{\gamma}$ as sub-semilattices of the weak order on $W$ induced by so-called $\gamma$-sortable elements. In this article, we define an edge-labeling of $\mathcal{C}_{\gamma}$, and show that this is an EL-labeling for every closed interval of $\mathcal{C}_{\gamma}$. In addition, we use our labeling to show that every finite open interval in a Cambrian semilattice is either contractible or spherical, and we characterize the spherical intervals, generalizing a result by Reading.
ISSN:1077-8926
1077-8926
DOI:10.37236/2910