On Short Zero-Sum Subsequences of Zero-Sum Sequences
Let $G$ be a finite abelian group of exponent $\exp(G)$. By $D(G)$ we denote the smallest integer $d\in \mathbb N$ such that every sequence over $G$ of length at least $d$ contains a nonempty zero-sum subsequence. By $\eta(G)$ we denote the smallest integer $d\in \mathbb N$ such that every sequence...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2012-09, Vol.19 (3) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $G$ be a finite abelian group of exponent $\exp(G)$. By $D(G)$ we denote the smallest integer $d\in \mathbb N$ such that every sequence over $G$ of length at least $d$ contains a nonempty zero-sum subsequence. By $\eta(G)$ we denote the smallest integer $d\in \mathbb N$ such that every sequence over $G$ of length at least $d$ contains a zero-sum subsequence $T$ with length $|T|\in [1,\exp(G)]$, such a sequence $T$ will be called a short zero-sum sequence. Let $C_0(G)$ denote the set consists of all integer $t\in [D(G)+1,\eta(G)-1]$ such that every zero-sum sequence of length exactly $t$ contains a short zero-sum subsequence. In this paper, we investigate the question whether $C_0(G)\neq \emptyset$ for all non-cyclic finite abelian groups $G$. Previous results showed that $C_0(G)\neq \emptyset$ for the groups $C_n^2$ ($n\geq 3$) and $C_3^3$. We show that more groups including the groups $C_m\oplus C_n$ with $3\leq m\mid n$, $C_{3^a5^b}^3$, $C_{3\times 2^a}^3$, $C_{3^a}^4$ and $C_{2^b}^r$ ($b\geq 2$) have this property. We also determine $C_0(G)$ completely for some groups including the groups of rank two, and some special groups with large exponent. |
---|---|
ISSN: | 1077-8926 1077-8926 |
DOI: | 10.37236/2602 |